메뉴 건너뛰기




Volumn 38, Issue 3, 2011, Pages 1565-1574

Multi-goal Q-learning of cooperative teams

Author keywords

Cooperative team; Multi agent learning; Multi goal learning; Q learning

Indexed keywords

COGNITIVE MAPS; COOPERATIVE TEAMS; LEARNING GOALS; LEARNING PERFORMANCE; MULTI-AGENT LEARNING; MULTI-GOAL LEARNING; OPTIMAL ACTIONS; PARAMETER VALUES; Q-LEARNING; Q-LEARNING ALGORITHMS; VIRTUAL TEAM;

EID: 78049530668     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2010.07.071     Document Type: Article
Times cited : (10)

References (21)
  • 4
    • 53349100494 scopus 로고    scopus 로고
    • A reinforcement learning model for supply chain ordering management: An application to the beer game
    • S.K. Chaharsooghi, J. Heydari, and S.H. Zegordi A reinforcement learning model for supply chain ordering management: An application to the beer game Decision Support Systems 45 2008 949 959
    • (2008) Decision Support Systems , vol.45 , pp. 949-959
    • Chaharsooghi, S.K.1    Heydari, J.2    Zegordi, S.H.3
  • 5
    • 53849147885 scopus 로고    scopus 로고
    • Dynamic packaging in e-retailing with stochastic demand over finite horizons: A Q-learning approach
    • Y. Cheng Dynamic packaging in e-retailing with stochastic demand over finite horizons: A Q-learning approach Expert Systems with Applications 36 2009 472 480
    • (2009) Expert Systems with Applications , vol.36 , pp. 472-480
    • Cheng, Y.1
  • 6
    • 78049528693 scopus 로고    scopus 로고
    • Learning multi-goal dialogue strategies using reinforcement learning with reduced state-action spaces
    • Pittsburgh, Pennsylvania
    • Cuayáhuitl, H.; Renals, S.; Lemon, O.; & Shimodaira, H. (2006). Learning multi-goal dialogue strategies using reinforcement learning with reduced state-action spaces. In INTERSPEECH 2006-ICSLP, Pittsburgh, Pennsylvania (Vol. 9, pp. 17-21).
    • (2006) INTERSPEECH 2006-ICSLP , vol.9 , pp. 17-21
    • Cuayáhuitl, H.1    Renals, S.2    Lemon, O.3    Shimodaira, H.4
  • 7
    • 0034246487 scopus 로고    scopus 로고
    • Target reaching by using visual information and Q-learning controllers
    • C. Distante, A. Anglani, and F. Taurisano Target reaching by using visual information and Q-learning controllers Autonomous Robots 9 2000 41 50
    • (2000) Autonomous Robots , vol.9 , pp. 41-50
    • Distante, C.1    Anglani, A.2    Taurisano, F.3
  • 9
    • 2342578813 scopus 로고    scopus 로고
    • Learning behavior-selection by emotions and cognition in a multi-goal robot task
    • S.C. Gadanho Learning behavior-selection by emotions and cognition in a multi-goal robot task Journal of Machine Learning Research 4 2003 385 412
    • (2003) Journal of Machine Learning Research , vol.4 , pp. 385-412
    • Gadanho, S.C.1
  • 10
    • 33847031724 scopus 로고    scopus 로고
    • Learning in innovation networks: Some simulation experiments
    • N. Gilbert, P. Ahrweiler, and A. Pyka Learning in innovation networks: Some simulation experiments Physica A 378 2007 100 109
    • (2007) Physica A , vol.378 , pp. 100-109
    • Gilbert, N.1    Ahrweiler, P.2    Pyka, A.3
  • 12
    • 0035978635 scopus 로고    scopus 로고
    • Modular Q-learning based multi-agent cooperation for robot soccer
    • K. Park, Y. Kim, and J. Kim Modular Q-learning based multi-agent cooperation for robot soccer Robotics and Autonomous Systems 35 2001 109 122
    • (2001) Robotics and Autonomous Systems , vol.35 , pp. 109-122
    • Park, K.1    Kim, Y.2    Kim, J.3
  • 16
    • 0001838252 scopus 로고    scopus 로고
    • An illustration of the essential difference between individual and social learning, and its consequences for computational analyses
    • N.J. Vriend An illustration of the essential difference between individual and social learning, and its consequences for computational analyses Journal of Economic Dynamics and Control 24 2000 1 19
    • (2000) Journal of Economic Dynamics and Control , vol.24 , pp. 1-19
    • Vriend, N.J.1
  • 18
    • 34547899534 scopus 로고    scopus 로고
    • A two-layered multi-agent reinforcement learning model and algorithm
    • DOI 10.1016/j.jnca.2006.09.004, PII S1084804506000713
    • B. Wang, Y. Gao, Z. Chen, J. Xie, and S. Chen A two-layered multi-agent reinforcement learning model and algorithm Journal of Network and Computer Applications 30 2007 1366 1376 (Pubitemid 47259418)
    • (2007) Journal of Network and Computer Applications , vol.30 , Issue.4 , pp. 1366-1376
    • Wang, B.-N.1    Gao, Y.2    Chen, Z.-Q.3    Xie, J.-Y.4    Chen, S.-F.5
  • 20
    • 34249833101 scopus 로고
    • Technical note Q-learning
    • C.J.C.H. Watkins Technical note Q-learning Machine Learning 8 1992 279 292
    • (1992) Machine Learning , vol.8 , pp. 279-292
    • Watkins, C.J.C.H.1
  • 21
    • 35048843384 scopus 로고    scopus 로고
    • Biologically inspired reinforcement learning: Reward-based decomposition for multi-goal environments
    • A. J. Ijspeert et al. (Eds.) LNCS
    • Zhou, W.; & Coggins, R. (2004). Biologically inspired reinforcement learning: Reward-based decomposition for multi-goal environments. In A. J. Ijspeert et al. (Eds.), BioADIT 2004. LNCS (Vol. 3141, pp. 80-94).
    • (2004) BioADIT 2004 , vol.3141 , pp. 80-94
    • Zhou, W.1    Coggins, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.