메뉴 건너뛰기




Volumn 30, Issue 4, 2007, Pages 1366-1376

A two-layered multi-agent reinforcement learning model and algorithm

Author keywords

Layered model; Multi agent; Reinforcement learning

Indexed keywords

ALGORITHMS; MATHEMATICAL MODELS; MULTI AGENT SYSTEMS; PROBLEM SOLVING;

EID: 34547899534     PISSN: 10848045     EISSN: 10958592     Source Type: Journal    
DOI: 10.1016/j.jnca.2006.09.004     Document Type: Article
Times cited : (19)

References (12)
  • 3
    • 0000746883 scopus 로고
    • Escaping brittleness: the possibilities of general purpose learning algorithms applied to parallel rule-based systems
    • Morgan Kaufmann, Los Altos, CA
    • Hooland J.H. Escaping brittleness: the possibilities of general purpose learning algorithms applied to parallel rule-based systems. Machine learning II (1986), Morgan Kaufmann, Los Altos, CA 593-623
    • (1986) Machine learning II , pp. 593-623
    • Hooland, J.H.1
  • 4
    • 0000929496 scopus 로고    scopus 로고
    • Multiagent reinforcement learning: theoretical framework and an algorithm
    • Morgan Kaufmann, San Fransisco
    • Hu J., and Wellman M. Multiagent reinforcement learning: theoretical framework and an algorithm. Proceedings of the 15th international conference on machine learning (1998), Morgan Kaufmann, San Fransisco 242-250
    • (1998) Proceedings of the 15th international conference on machine learning , pp. 242-250
    • Hu, J.1    Wellman, M.2
  • 5
    • 85149834820 scopus 로고
    • Markov games as a framework for multi-agent reinforcement learning
    • Morgan Kaufmann, San Francisco
    • Littman M.L. Markov games as a framework for multi-agent reinforcement learning. Proceedings of 11th international conference on machine learning (1994), Morgan Kaufmann, San Francisco 157-163
    • (1994) Proceedings of 11th international conference on machine learning , pp. 157-163
    • Littman, M.L.1
  • 7
    • 34547906925 scopus 로고    scopus 로고
    • Littman ML, Szepesvari C. A generalized reinforcement-learning model: convergence and applications. In: Proceedings of 13th international conference on machine learning; 1996. p. 310-18.
  • 8
    • 4544316833 scopus 로고    scopus 로고
    • Cooperative learning using advice exchange
    • Springer, Berlin, Heidelberg
    • Nunes L., and Oliveira E. Cooperative learning using advice exchange. Adaptive agents and multi-agent systems vol. 2636 (2003), Springer, Berlin, Heidelberg 33-48
    • (2003) Adaptive agents and multi-agent systems , vol.2636 , pp. 33-48
    • Nunes, L.1    Oliveira, E.2
  • 10
    • 34547903757 scopus 로고    scopus 로고
    • Shoham Y, Powers R, Grenager T. Multi-agent reinforcement learning: a critical survey. Technical Report, Stanford University; 2003.
  • 11
    • 34547897268 scopus 로고    scopus 로고
    • Stone P, Littman ML. Implicit negotiation in repeated games. In: Preproceedings of the eighth international workshop on agent theories, architectures, and languages (ATAL2001); 2001, p. 96-105.
  • 12
    • 34249833101 scopus 로고
    • Technical note: Q-learning
    • Watkins C.J.C.H., and Dayan P. Technical note: Q-learning. Machine Learning 8 3/4 (1992) 279-292
    • (1992) Machine Learning , vol.8 , Issue.3-4 , pp. 279-292
    • Watkins, C.J.C.H.1    Dayan, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.