메뉴 건너뛰기




Volumn 81, Issue 2, 2010, Pages 149-178

Learning to classify with missing and corrupted features

Author keywords

Adversarial environment; Binary classification; Deleted features

Indexed keywords

ADVERSARIAL ENVIRONMENTS; BINARY CLASSIFICATION; BINARY CLASSIFICATION PROBLEMS; DELETED FEATURES; LEARNING PROBLEM; LINEAR PROGRAMS; MACHINE LEARNING TECHNIQUES; PERCEPTRON ALGORITHMS; REAL WORLD SITUATIONS; ROBUST LEARNING; STATISTICAL BOUNDS; SUPERVISED MACHINE LEARNING; TRAINING EXAMPLE; TRAINING PHASE;

EID: 78049529865     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-009-5124-8     Document Type: Article
Times cited : (118)

References (22)
  • 2
    • 0002935122 scopus 로고    scopus 로고
    • Combining support vector and mathematical programming methods for classification
    • MIT Press Cambridge
    • Bennett, K. P. (1999). Combining support vector and mathematical programming methods for classification. In Advances in kernel methods: support vector learning (pp. 307-326). Cambridge: MIT Press.
    • (1999) Advances in Kernel Methods: Support Vector Learning , pp. 307-326
    • Bennett, K.P.1
  • 4
    • 78049527526 scopus 로고    scopus 로고
    • Compact vs. exponential-size LP relaxations (Technical Report SAND2000-2170)
    • September 2000
    • Carr, R. D., & Lancia, G. (2000). Compact vs. exponential-size LP relaxations (Technical Report SAND2000-2170). SANDIA Report, September 2000.
    • (2000) SANDIA Report
    • Carr, R.D.1    Lancia, G.2
  • 5
    • 4544304381 scopus 로고    scopus 로고
    • On the generalization ability of on-line learning algorithms
    • 10.1109/TIT.2004.833339 2097190
    • N. Cesa-Bianchi A. Conconi C. Gentile 2004 On the generalization ability of on-line learning algorithms IEEE Transactions on Information Theory 50 9 2050 2057 10.1109/TIT.2004.833339 2097190
    • (2004) IEEE Transactions on Information Theory , vol.50 , Issue.9 , pp. 2050-2057
    • Cesa-Bianchi, N.1    Conconi, A.2    Gentile, C.3
  • 8
    • 0000406788 scopus 로고
    • Solving multiclass learning problems via error-correcting output codes
    • 0900.68358
    • T. G. Dietterich G. Bakiri 1995 Solving multiclass learning problems via error-correcting output codes Journal of Artificial Intelligence Research 2 263 286 0900.68358
    • (1995) Journal of Artificial Intelligence Research , vol.2 , pp. 263-286
    • Dietterich, T.G.1    Bakiri, G.2
  • 12
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale support vector machine learning practical
    • B. Schölkopf C. Burges A. Smola (eds). MIT Press Cambridge
    • Joachims, T. (1998). Making large-scale support vector machine learning practical. In B. Schölkopf, C. Burges, & A. Smola (Eds.), Advances in kernel methods-support vector learning. Cambridge: MIT Press.
    • (1998) Advances in Kernel Methods-support Vector Learning
    • Joachims, T.1
  • 13
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • 10.1109/5.726791
    • Y. LeCun L. Bottou Y. Bengio P. Haffner 1998 Gradient-based learning applied to document recognition Proceedings of the IEEE 86 11 2278 2324 10.1109/5.726791
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 17
    • 11144273669 scopus 로고
    • The perceptron: A probabilistic model for information storage and organization in the brain
    • 10.1037/h0042519 1529895
    • F. Rosenblatt 1958 The perceptron: a probabilistic model for information storage and organization in the brain Psychological Review 65 386 407 10.1037/h0042519 1529895
    • (1958) Psychological Review , vol.65 , pp. 386-407
    • Rosenblatt, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.