메뉴 건너뛰기




Volumn 24, Issue 2, 2011, Pages 204-209

Solitary waves for the perturbed nonlinear KleinGordon equation

Author keywords

Anstze method; KleinGordon equation; Solitons

Indexed keywords

ANSTZE METHOD; KLEIN-GORDON EQUATION; NONLINEAR KLEIN-GORDON EQUATION; SOLITARY WAVE; SOLITARY WAVE SOLUTION;

EID: 78049461148     PISSN: 08939659     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.aml.2010.09.004     Document Type: Article
Times cited : (3)

References (33)
  • 1
    • 0002004721 scopus 로고
    • Solitons, Nonlinear Evolution Equations and Inverse Scattering
    • Cambridge University Press Cambridge
    • M.J. Ablowitz, and P.A. Clarkson Solitons, Nonlinear Evolution Equations and Inverse Scattering London Mathematical Society Lecture Notes vol. 149 1991 Cambridge University Press Cambridge
    • (1991) London Mathematical Society Lecture Notes , vol.149
    • Ablowitz, M.J.1    Clarkson, P.A.2
  • 3
    • 0016369301 scopus 로고
    • The inverse scattering transform-Fourier analysis for nonlinear problems
    • M.J. Ablowitz, D.J. Kaup, A.C. Newell, and H. Segur The inverse scattering transform-Fourier analysis for nonlinear problems Stud. Appl. Math. 53 1974 249 315
    • (1974) Stud. Appl. Math. , vol.53 , pp. 249-315
    • Ablowitz, M.J.1    Kaup, D.J.2    Newell, A.C.3    Segur, H.4
  • 4
    • 84972562218 scopus 로고
    • A mathematical justification for Kortewegde Vries equation and boussinesq equation of water surface waves
    • T. Kano, and T. Nishida A mathematical justification for Kortewegde Vries equation and boussinesq equation of water surface waves Osaka J. Math. 23 1986 389 413
    • (1986) Osaka J. Math. , vol.23 , pp. 389-413
    • Kano, T.1    Nishida, T.2
  • 5
    • 0001803571 scopus 로고
    • Dynamics of classical solitons (in non-integrabla systems), physics reports
    • V.G. Makhankov Dynamics of classical solitons (in non-integrabla systems), physics reports Phys. Lett. C 35 1978 1 128
    • (1978) Phys. Lett. C , vol.35 , pp. 1-128
    • Makhankov, V.G.1
  • 6
    • 17644381219 scopus 로고    scopus 로고
    • Variants of the two-dimensional boussinesq equation with compactons, solitons, and periodic solutions
    • A.M. Wazwaz Variants of the two-dimensional boussinesq equation with compactons, solitons, and periodic solutions Computers and Mathematics with Applications 49 2005 295 301
    • (2005) Computers and Mathematics with Applications , vol.49 , pp. 295-301
    • Wazwaz, A.M.1
  • 7
    • 60849089602 scopus 로고    scopus 로고
    • 1-Soliton solution of the B(m,n) equation with generalized evolution
    • A. Biswas 1-Soliton solution of the B (m, n ) equation with generalized evolution Commun. Nonlinear Sci. Numer. Simul. 14 2009 3226 3229
    • (2009) Commun. Nonlinear Sci. Numer. Simul. , vol.14 , pp. 3226-3229
    • Biswas, A.1
  • 8
    • 67949100450 scopus 로고    scopus 로고
    • Topological and non-topological solitons of the generalized KleinGordon equations
    • R. Sassaman, and A. Biswas Topological and non-topological solitons of the generalized KleinGordon equations Appl. Math. Comput. 215 2009 212 220
    • (2009) Appl. Math. Comput. , vol.215 , pp. 212-220
    • Sassaman, R.1    Biswas, A.2
  • 9
    • 70449731178 scopus 로고    scopus 로고
    • A study on three types of nonlinear KleinGordon equations
    • Y. Zheng, and S. Lai A study on three types of nonlinear KleinGordon equations Dyn. Contin. Discrete Impuls. Syst., Ser. B 16 2009 271 279
    • (2009) Dyn. Contin. Discrete Impuls. Syst., Ser. B , vol.16 , pp. 271-279
    • Zheng, Y.1    Lai, S.2
  • 10
    • 77954349829 scopus 로고    scopus 로고
    • Topological and non-topological solitons of the KleinGordon equations in 1+2 dimensions
    • R. Sassaman, and A. Biswas Topological and non-topological solitons of the KleinGordon equations in 1 + 2 dimensions Nonlinear Dyn. 61 2010 23 28
    • (2010) Nonlinear Dyn. , vol.61 , pp. 23-28
    • Sassaman, R.1    Biswas, A.2
  • 11
    • 36248992919 scopus 로고    scopus 로고
    • New travelling wave solutions to the boussinesq and the KleinGordon equations
    • A.M. Wazwaz New travelling wave solutions to the boussinesq and the KleinGordon equations Commun. Nonlinear Sci. Numer. Simul. 13 2008 889 901
    • (2008) Commun. Nonlinear Sci. Numer. Simul. , vol.13 , pp. 889-901
    • Wazwaz, A.M.1
  • 12
    • 23144457561 scopus 로고    scopus 로고
    • Generalized forms of the phi-four equation with compactons, solitons and periodic solutions
    • A.M. Wazwaz Generalized forms of the phi-four equation with compactons, solitons and periodic solutions Math. Comput. Simul. 69 2005 580 588
    • (2005) Math. Comput. Simul. , vol.69 , pp. 580-588
    • Wazwaz, A.M.1
  • 13
    • 25144449613 scopus 로고    scopus 로고
    • The tanh and sinecosine methods for compact and noncompact solutions of the nonlinear KleinGordon equation
    • A.M. Wazwaz The tanh and sinecosine methods for compact and noncompact solutions of the nonlinear KleinGordon equation Appl. Math. Comput. 167 2005 1179 1195
    • (2005) Appl. Math. Comput. , vol.167 , pp. 1179-1195
    • Wazwaz, A.M.1
  • 14
    • 0001635608 scopus 로고
    • On types of nonlinear nonintegrable equations with exact solutions
    • N.A. Kudryashov On types of nonlinear nonintegrable equations with exact solutions Phys. Lett. A 155 1991 269 275
    • (1991) Phys. Lett. A , vol.155 , pp. 269-275
    • Kudryashov, N.A.1
  • 15
    • 70349861750 scopus 로고    scopus 로고
    • Exact travelling wave solutions of the generalized Bretherton equation
    • F.J. Romeiras Exact travelling wave solutions of the generalized Bretherton equation Appl. Math. Comput. 215 2009 1791 1805
    • (2009) Appl. Math. Comput. , vol.215 , pp. 1791-1805
    • Romeiras, F.J.1
  • 16
    • 0023169787 scopus 로고
    • Nonlinear oscillations in a suspension bridge
    • P.J. McKenna, and W. Walter Nonlinear oscillations in a suspension bridge Arch. Ration. Mech. Anal. 87 1987 167 177
    • (1987) Arch. Ration. Mech. Anal. , vol.87 , pp. 167-177
    • McKenna, P.J.1    Walter, W.2
  • 18
    • 84968476629 scopus 로고
    • Instability and nonexistence of global solutions to nonlinear wave equations of the form Putt=-Au+F(u)
    • H.A. Levine Instability and nonexistence of global solutions to nonlinear wave equations of the form P utt = - Au + F (u ) Trans. Amer. Math. Soc. 192 1974 1 21
    • (1974) Trans. Amer. Math. Soc. , vol.192 , pp. 1-21
    • Levine, H.A.1
  • 19
    • 0038613885 scopus 로고    scopus 로고
    • Stepwise precession of the resonant swinging spring
    • D.D. Holm, and P. Lynch Stepwise precession of the resonant swinging spring SIAM J. Appl. Dyn. Syst. 1 2002 44 64
    • (2002) SIAM J. Appl. Dyn. Syst. , vol.1 , pp. 44-64
    • Holm, D.D.1    Lynch, P.2
  • 20
    • 29144443418 scopus 로고    scopus 로고
    • Local time decay for a nonlinear beam equation
    • J.E. Lin Local time decay for a nonlinear beam equation Methods Appl. Anal. 11 1 2004 65 68
    • (2004) Methods Appl. Anal. , vol.11 , Issue.1 , pp. 65-68
    • Lin, J.E.1
  • 21
    • 56249128025 scopus 로고
    • N-soliton solutions of model equations for shallow water waves
    • R. Hirota, and J. Satsuma N-soliton solutions of model equations for shallow water waves J. Phys. Soc. Japan 40 1976 611
    • (1976) J. Phys. Soc. Japan , vol.40 , pp. 611
    • Hirota, R.1    Satsuma, J.2
  • 23
    • 0000348369 scopus 로고
    • Resonant interactions between waves. The case of discrete oscillations
    • F.P. Bretherton Resonant interactions between waves. The case of discrete oscillations J. Fluid Mech. 20 1964 457 479
    • (1964) J. Fluid Mech. , vol.20 , pp. 457-479
    • Bretherton, F.P.1
  • 24
    • 0038936254 scopus 로고    scopus 로고
    • Nonlinear wave interactions in nonlinear nonintegrable systems
    • N.G. Berloff, and L.N. Howard Nonlinear wave interactions in nonlinear nonintegrable systems Stud. Appl. Math. 100 1998 195 213
    • (1998) Stud. Appl. Math. , vol.100 , pp. 195-213
    • Berloff, N.G.1    Howard, L.N.2
  • 25
    • 0041975867 scopus 로고    scopus 로고
    • Simulation of wave interactions and turbulence in one-dimensional water waves
    • K.M. Berger, and P.A. Milewski Simulation of wave interactions and turbulence in one-dimensional water waves SIAM J. Appl. Math. 63 2003 1121 1140
    • (2003) SIAM J. Appl. Math. , vol.63 , pp. 1121-1140
    • Berger, K.M.1    Milewski, P.A.2
  • 26
    • 0025546181 scopus 로고
    • Large-amplitude oscillations in suspension bridges: Some new connections with nonlinear analysis
    • A.C. Lazer, and P.J. McKenna Large-amplitude oscillations in suspension bridges: some new connections with nonlinear analysis SIAM Rev. 32 1990 537 578
    • (1990) SIAM Rev. , vol.32 , pp. 537-578
    • Lazer, A.C.1    McKenna, P.J.2
  • 27
    • 0040005929 scopus 로고    scopus 로고
    • Decay estimates for fourth order wave equations
    • S.P. Levandosky Decay estimates for fourth order wave equations J. Differential Equations 143 1998 360 413
    • (1998) J. Differential Equations , vol.143 , pp. 360-413
    • Levandosky, S.P.1
  • 28
    • 54649083988 scopus 로고    scopus 로고
    • Stability and instability of fourth-order solitary waves
    • S.P. Levandosky Stability and instability of fourth-order solitary waves J. Dynam. Differential Equations 10 1998 151 188
    • (1998) J. Dynam. Differential Equations , vol.10 , pp. 151-188
    • Levandosky, S.P.1
  • 29
    • 34548502348 scopus 로고    scopus 로고
    • Time decay for the nonlinear beam equation
    • S.P. Levandosky, and W.A. Strauss Time decay for the nonlinear beam equation Methods Appl. Anal. 7 2000 479 488
    • (2000) Methods Appl. Anal. , vol.7 , pp. 479-488
    • Levandosky, S.P.1    Strauss, W.A.2
  • 30
    • 33947153806 scopus 로고    scopus 로고
    • Applications of algebraic method to exactly solve some nonlinear partial differential equations
    • A.A. Darwish, and A. Ramady Applications of algebraic method to exactly solve some nonlinear partial differential equations Chaos Soliton Fractals 33 2007 1263 1274
    • (2007) Chaos Soliton Fractals , vol.33 , pp. 1263-1274
    • Darwish, A.A.1    Ramady, A.2
  • 31
    • 36249009075 scopus 로고    scopus 로고
    • New periodic wave solutions for the shallow water equations and the generalized KleinGordon equation
    • A. Elgarayahi New periodic wave solutions for the shallow water equations and the generalized KleinGordon equation Commun. Nonlinear Sci. Numer. Simul. 13 2008 877 888
    • (2008) Commun. Nonlinear Sci. Numer. Simul. , vol.13 , pp. 877-888
    • Elgarayahi, A.1
  • 32
    • 35949040541 scopus 로고
    • Exact solutions of the Korteweg-de Vries equation for multiple collisions of solitons
    • R. Hirota Exact solutions of the Korteweg-de Vries equation for multiple collisions of solitons Phys. Rev. Lett. 27 1971 1192
    • (1971) Phys. Rev. Lett. , vol.27 , pp. 1192
    • Hirota, R.1
  • 33
    • 0037118984 scopus 로고    scopus 로고
    • Multiple travelling wave solutions of nonlinear evolution equations using a unified algebraic method
    • E. Fan Multiple travelling wave solutions of nonlinear evolution equations using a unified algebraic method J. Phys. A: Math. Gen. 35 2002 6853 6872
    • (2002) J. Phys. A: Math. Gen. , vol.35 , pp. 6853-6872
    • Fan, E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.