메뉴 건너뛰기




Volumn 61, Issue 1-2, 2010, Pages 23-28

Topological and non-topological solitons of the Klein-Gordon equations in 1+2 dimensions

Author keywords

Integrability; Integrals of motion; Solitons

Indexed keywords

INTEGRABILITY; INTEGRALS OF MOTION; KLEIN-GORDON EQUATION; SOLITARY WAVE; SOLITON SOLUTIONS; TOPOLOGICAL SOLITON;

EID: 77954349829     PISSN: 0924090X     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11071-009-9628-3     Document Type: Article
Times cited : (50)

References (20)
  • 1
    • 50549090832 scopus 로고    scopus 로고
    • Solution of non-linear Klein-Gordon equation with a quadratic non-linear term by Adomian decomposition method
    • 10.1016/j.cnsns.2007.09.018 2449749
    • K.C. Basak P.C. Ray R.K. Bera 2009 Solution of non-linear Klein-Gordon equation with a quadratic non-linear term by Adomian decomposition method Commun. Nonlinear Sci. Numer. Simul. 14 3 718 723 10.1016/j.cnsns.2007.09.018 2449749
    • (2009) Commun. Nonlinear Sci. Numer. Simul. , vol.14 , Issue.3 , pp. 718-723
    • Basak, K.C.1    Ray, P.C.2    Bera, R.K.3
  • 2
    • 50249112061 scopus 로고    scopus 로고
    • Soliton perturbation theory for the quadratic nonlinear Klein-Gordon equations
    • 1161.35480 10.1016/j.amc.2008.04.013 2451548
    • A. Biswas C. Zony E. Zerrad 2008 Soliton perturbation theory for the quadratic nonlinear Klein-Gordon equations Appl. Math. Comput. 203 1 153 156 1161.35480 10.1016/j.amc.2008.04.013 2451548
    • (2008) Appl. Math. Comput. , vol.203 , Issue.1 , pp. 153-156
    • Biswas, A.1    Zony, C.2    Zerrad, E.3
  • 3
    • 17844405597 scopus 로고    scopus 로고
    • Solution of the Klein-Gordon for exponential scalar and vector potentials
    • DOI 10.1016/j.physleta.2005.03.040
    • G. Chen 2005 Solution of the Klein-Gordon for exponential scalar and vector potentials Phys. Lett. A 339 3-5 300 303 1145.81353 10.1016/j.physleta. 2005.03.040 2132685 (Pubitemid 40591632)
    • (2005) Physics Letters, Section A: General, Atomic and Solid State Physics , vol.339 , Issue.3-5 , pp. 300-303
    • Chen, G.1
  • 4
    • 4644281716 scopus 로고    scopus 로고
    • Difficulties with the Klein-Gordon equation
    • E. Comay 2004 Difficulties with the Klein-Gordon equation Apeiron 11 3 1 18
    • (2004) Apeiron , vol.11 , Issue.3 , pp. 1-18
    • Comay, E.1
  • 5
    • 58049153855 scopus 로고    scopus 로고
    • Travelling wave solutions for a nonlinear variant of the phi-four equation
    • 1165.35415 10.1016/j.mcm.2008.03.011 2483666
    • X. Deng M. Zhao X. Li 2009 Travelling wave solutions for a nonlinear variant of the phi-four equation Math. Comput. Model. 49 3-4 617 622 1165.35415 10.1016/j.mcm.2008.03.011 2483666
    • (2009) Math. Comput. Model. , vol.49 , Issue.34 , pp. 617-622
    • Deng, X.1    Zhao, M.2    Li, X.3
  • 6
    • 54449092407 scopus 로고    scopus 로고
    • Exact solutions for the generalized Klein-Gordon equation via a transformation and Exp-function method and comparison with Adomian's method
    • 1155.65079 10.1016/j.cam.2008.01.010 2463116
    • A. Ebaid 2009 Exact solutions for the generalized Klein-Gordon equation via a transformation and Exp-function method and comparison with Adomian's method J. Comput. Appl. Math. 223 1 278 290 1155.65079 10.1016/j.cam.2008.01.010 2463116
    • (2009) J. Comput. Appl. Math. , vol.223 , Issue.1 , pp. 278-290
    • Ebaid, A.1
  • 7
    • 36249009075 scopus 로고    scopus 로고
    • New periodic wave solutions for the shallow water equations and the generalized Klein-Gordon equation
    • DOI 10.1016/j.cnsns.2006.07.013, PII S1007570406001535
    • A. Elgarayahi 2008 New periodic wave solutions for the shallow water equations and the generalized Klein-Gordon equation Commun. Nonlinear Sci. Numer. Simul. 13 5 877 888 10.1016/j.cnsns.2006.07.013 2372134 (Pubitemid 350131500)
    • (2008) Communications in Nonlinear Science and Numerical Simulation , vol.13 , Issue.5 , pp. 877-888
    • Elgarayhi, A.1
  • 8
    • 25844491789 scopus 로고    scopus 로고
    • A direct proof of global existence for the Dirac-Klein-Gordon equations in one space dimension
    • 1050.35091
    • Y.-f. Fang 2004 A direct proof of global existence for the Dirac-Klein-Gordon equations in one space dimension Taiwan. J. Math. 8 1 33 41 1050.35091
    • (2004) Taiwan. J. Math. , vol.8 , Issue.1 , pp. 33-41
    • Fang, Y.-F.1
  • 9
    • 34548533976 scopus 로고    scopus 로고
    • 6 field model
    • 10.1016/j.physleta.2007.04.088 2412313
    • 6 field model Phys. Lett. A 369 255 261 10.1016/j.physleta.2007.04.088 2412313
    • (2007) Phys. Lett. A , vol.369 , pp. 255-261
    • Feng, D.1    Li, J.2
  • 10
    • 63449123795 scopus 로고    scopus 로고
    • Seven common errors in finding exact solutions of nonlinear differential equations
    • Kudryashov, N.A.: Seven common errors in finding exact solutions of nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 14(9-10) (2009)
    • (2009) Commun. Nonlinear Sci. Numer. Simul. , vol.14 , Issue.9-10
    • Kudryashov, N.A.1
  • 11
    • 33947126983 scopus 로고    scopus 로고
    • New compacton and solitary pattern solutions of the nonlinear modified dispersive Klein-Gordon equations
    • DOI 10.1016/j.chaos.2006.01.083, PII S0960077906001494
    • Mustafa Inc. 2007 New compacton and solitary pattern solutions of the nonlinear modified dispersive Klein-Gordon equations Chaos Solitons Fractals 33 4 1275 1284 10.1016/j.chaos.2006.01.083 2318913 (Pubitemid 46413007)
    • (2007) Chaos, Solitons and Fractals , vol.33 , Issue.4 , pp. 1275-1284
    • Inc, M.1
  • 12
    • 60849102123 scopus 로고    scopus 로고
    • Soliton perturbation theory for phi-four model and nonlinear Klein-Gordon equations
    • 10.1016/j.cnsns.2008.12.020 2502400
    • R. Sassaman A. Biswas 2009 Soliton perturbation theory for phi-four model and nonlinear Klein-Gordon equations Commun. Nonlinear Sci. Numer. Simul. 14 8 3226 3229 10.1016/j.cnsns.2008.12.020 2502400
    • (2009) Commun. Nonlinear Sci. Numer. Simul. , vol.14 , Issue.8 , pp. 3226-3229
    • Sassaman, R.1    Biswas, A.2
  • 13
    • 67949100450 scopus 로고    scopus 로고
    • Topological and non-topological solitons of the generalized Klein-Gordon equations
    • 1176.35150 10.1016/j.amc.2009.05.001 2568322
    • R. Sassaman A. Biswas 2009 Topological and non-topological solitons of the generalized Klein-Gordon equations Appl. Math. Comput. 215 1 212 220 1176.35150 10.1016/j.amc.2009.05.001 2568322
    • (2009) Appl. Math. Comput. , vol.215 , Issue.1 , pp. 212-220
    • Sassaman, R.1    Biswas, A.2
  • 14
    • 35448960877 scopus 로고    scopus 로고
    • Numerical solution of the Klein-Gordon equation via He's variational iteration method
    • 10.1007/s11071-006-9194-x 2362372
    • F. Shakeri M. Dehghan 2007 Numerical solution of the Klein-Gordon equation via He's variational iteration method Nonlinear Dyn. 51 1-2 89 97 10.1007/s11071-006-9194-x 2362372
    • (2007) Nonlinear Dyn. , vol.51 , Issue.12 , pp. 89-97
    • Shakeri, F.1    Dehghan, M.2
  • 15
    • 33847035933 scopus 로고    scopus 로고
    • Exact travelling wave solutions for four forms of nonlinear Klein-Gordon equations
    • 10.1016/j.physleta.2006.11.049 2287822
    • Sirendaoreji 2007 Exact travelling wave solutions for four forms of nonlinear Klein-Gordon equations Phys. Lett. A 363 440 447 10.1016/j.physleta. 2006.11.049 2287822
    • (2007) Phys. Lett. A , vol.363 , pp. 440-447
    • Sirendaoreji1
  • 16
    • 0037169640 scopus 로고    scopus 로고
    • Solutions of compact and noncompact structures for nonlinear Klein-Gordon type equation
    • 1027.35119 10.1016/S0096-3003(01)00296-X 1931551
    • A.M. Wazwaz 2003 Solutions of compact and noncompact structures for nonlinear Klein-Gordon type equation Appl. Math. Comput. 134 2-3 487 500 1027.35119 10.1016/S0096-3003(01)00296-X 1931551
    • (2003) Appl. Math. Comput. , vol.134 , Issue.23 , pp. 487-500
    • Wazwaz, A.M.1
  • 17
    • 25144449613 scopus 로고    scopus 로고
    • The tanh and the sine-cosine methods for compact and noncompact solutions of the nonlinear Klein-Gordon equation
    • DOI 10.1016/j.amc.2004.08.006, PII S0096300304005600
    • A.M. Wazwaz 2005 The tanh and sine-cosine methods for compact and noncompact solutions of the nonlinear Klein-Gordon equation Appl. Math. Comput. 167 2 1179 1195 1082.65584 10.1016/j.amc.2004.08.006 2169760 (Pubitemid 41344817)
    • (2005) Applied Mathematics and Computation , vol.167 , Issue.2 , pp. 1179-1195
    • Wazwaz, A.-M.1
  • 18
    • 23144457561 scopus 로고    scopus 로고
    • Generalized forms of the phi-four equation with compactons, solitons and periodic solutions
    • DOI 10.1016/j.matcom.2005.03.018, PII S0378475405001059, Nonlinear Waves: Computation and Theory IV
    • A.M. Wazwaz 2005 Generalized forms of the phi-four equation with compactons, solitons and periodic solutions Math. Comput. Simul. 69 5-6 580 588 1078.35526 10.1016/j.matcom.2005.03.018 2169730 (Pubitemid 41084735)
    • (2005) Mathematics and Computers in Simulation , vol.69 , Issue.5-6 , pp. 580-588
    • Wazwaz, A.-M.1
  • 19
    • 36248992919 scopus 로고    scopus 로고
    • New travelling wave solutions to the Boussinesq and the Klein-Gordon equations
    • DOI 10.1016/j.cnsns.2006.08.005, PII S1007570406001729
    • A.M. Wazwaz 2008 New travelling wave solutions to the Boussinesq and the Klein-Gordon equations Commun. Nonlinear Sci. Numer. Simul. 13 5 889 901 10.1016/j.cnsns.2006.08.005 2372135 (Pubitemid 350131505)
    • (2008) Communications in Nonlinear Science and Numerical Simulation , vol.13 , Issue.5 , pp. 889-901
    • Wazwaz, A.-M.1
  • 20
    • 70449731178 scopus 로고    scopus 로고
    • A study on three types of nonlinear Klein-Gordon equations
    • 05554871 2508026
    • Y. Zheng S. Lai 2009 A study on three types of nonlinear Klein-Gordon equations Dyn. Contin. Discrete Impuls. Syst., Ser. B 16 2 271 279 05554871 2508026
    • (2009) Dyn. Contin. Discrete Impuls. Syst., Ser. B , vol.16 , Issue.2 , pp. 271-279
    • Zheng, Y.1    Lai, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.