메뉴 건너뛰기




Volumn 95, Issue 11, 2010, Pages 1216-1229

Efficient computation of global sensitivity indices using sparse polynomial chaos expansions

Author keywords

ANOVA; Global sensitivity analysis; Sequential experimental design; Sobol' indices; Sparse polynomial chaos; Stepwise regression

Indexed keywords

ANOVA; GLOBAL SENSITIVITY ANALYSIS; SEQUENTIAL EXPERIMENTAL DESIGN; SOBOL' INDICES; SPARSE POLYNOMIALS; STEPWISE REGRESSION;

EID: 78049421958     PISSN: 09518320     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ress.2010.06.015     Document Type: Article
Times cited : (333)

References (75)
  • 2
    • 0038476492 scopus 로고    scopus 로고
    • Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems
    • J.C. Helton, and F.J. Davies Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems Reliab Eng Syst Safety 81 1 2003 23 69
    • (2003) Reliab Eng Syst Safety , vol.81 , Issue.1 , pp. 23-69
    • Helton, J.C.1    Davies, F.J.2
  • 3
    • 0029509837 scopus 로고
    • About the use of rank transformation in sensitivity of model output
    • A. Saltelli, and I.M. Sobol' About the use of rank transformation in sensitivity of model output Reliab Eng Syst Safety 50 1995 225 239
    • (1995) Reliab Eng Syst Safety , vol.50 , pp. 225-239
    • Saltelli, A.1    Sobol, I.M.2
  • 4
    • 0001368656 scopus 로고
    • The Jacknife estimate of variance
    • B. Efron, and C. Stein The Jacknife estimate of variance Ann Stat 9 3 1981 586 596
    • (1981) Ann Stat , vol.9 , Issue.3 , pp. 586-596
    • Efron, B.1    Stein, C.2
  • 5
    • 0040102388 scopus 로고
    • Nonlinear sensitivity analysis of multiparameter model systems
    • H. Cukier, R.I. Levine, and K. Shuler Nonlinear sensitivity analysis of multiparameter model systems J Comput Phys 26 1978 1 42
    • (1978) J Comput Phys , vol.26 , pp. 1-42
    • Cukier, H.1    Levine, R.I.2    Shuler, K.3
  • 6
    • 0033079533 scopus 로고    scopus 로고
    • A quantitative, model independent method for global sensitivity analysis of model output
    • A. Saltelli, S. Tarantola, and K. Chan A quantitative, model independent method for global sensitivity analysis of model output Technometrics 41 1 1999 39 56
    • (1999) Technometrics , vol.41 , Issue.1 , pp. 39-56
    • Saltelli, A.1    Tarantola, S.2    Chan, K.3
  • 7
    • 0000760143 scopus 로고
    • Sensitivity estimates for nonlinear mathematical models
    • I.M. Sobol' Sensitivity estimates for nonlinear mathematical models Math Model Comput Exp 1 1993 407 414
    • (1993) Math Model Comput Exp , vol.1 , pp. 407-414
    • Sobol, I.M.1
  • 8
    • 0040052402 scopus 로고    scopus 로고
    • Sensitivity measures, ANOVA-like techniques and the use of bootstrap
    • G.E. Archer, A. Saltelli, and I.M. Sobol' Sensitivity measures, ANOVA-like techniques and the use of bootstrap J. Stat. Comput. Simul. 58 1997 99 120
    • (1997) J. Stat. Comput. Simul. , vol.58 , pp. 99-120
    • Archer, G.E.1    Saltelli, A.2    Sobol, I.M.3
  • 9
    • 0033079533 scopus 로고    scopus 로고
    • A quantitative model-independent method for global sensitivity analysis of model output
    • A. Saltelli, S. Tarantola, and K.P.-S. Chan A quantitative model-independent method for global sensitivity analysis of model output Technometrics 41 1 1999 39 56
    • (1999) Technometrics , vol.41 , Issue.1 , pp. 39-56
    • Saltelli, A.1    Tarantola, S.2    Chan, K.P.-S.3
  • 10
    • 33847674696 scopus 로고    scopus 로고
    • Global sensitivity indices for nonlinear mathematical models. Review
    • I.M. Sobol', and S.S. Kucherenko Global sensitivity indices for nonlinear mathematical models. Review Wilmott Mag 1 2005 56 61
    • (2005) Wilmott Mag , vol.1 , pp. 56-61
    • Sobol, I.M.1    Kucherenko, S.S.2
  • 11
    • 84952096573 scopus 로고
    • Factorial sampling plans for preliminary computational experiments
    • M.D. Morris Factorial sampling plans for preliminary computational experiments Technometrics 33 2 1991 161 174
    • (1991) Technometrics , vol.33 , Issue.2 , pp. 161-174
    • Morris, M.D.1
  • 12
    • 33745727561 scopus 로고    scopus 로고
    • Survey of sampling-based methods for uncertainty and sensitivity analysis
    • J.C. Helton, J.D. Johnson, C.J. Sallaberry, and C.B. Storlie Survey of sampling-based methods for uncertainty and sensitivity analysis Reliab Eng Syst Safety 91 1011 2006 1175 1209
    • (2006) Reliab Eng Syst Safety , vol.91 , Issue.1011 , pp. 1175-1209
    • Helton, J.C.1    Johnson, J.D.2    Sallaberry, C.J.3    Storlie, C.B.4
  • 13
    • 0029474595 scopus 로고
    • Sensitivity analysis of model output: Performance of the iterated fractional factorial design method
    • A. Saltelli, T.H. Andres, and T. Homma Sensitivity analysis of model output: performance of the iterated fractional factorial design method Comput Stat Data Anal 20 4 1995 387 407
    • (1995) Comput Stat Data Anal , vol.20 , Issue.4 , pp. 387-407
    • Saltelli, A.1    Andres, T.H.2    Homma, T.3
  • 14
    • 0035388799 scopus 로고    scopus 로고
    • PlackettBurman techniques for sensitivity analysis of many-parametered models
    • D.L. Beres, and D.M. Hawkins PlackettBurman techniques for sensitivity analysis of many-parametered models Ecol Model 141 13 2001 171 183
    • (2001) Ecol Model , vol.141 , Issue.13 , pp. 171-183
    • Beres, D.L.1    Hawkins, D.M.2
  • 15
    • 34548585030 scopus 로고    scopus 로고
    • Multiple predictor smoothing methods for sensitivity analysis: Description of techniques
    • C.B. Storlie, and J.C. Helton Multiple predictor smoothing methods for sensitivity analysis: description of techniques Reliab Eng Syst Safety 93 1 2008 28 54
    • (2008) Reliab Eng Syst Safety , vol.93 , Issue.1 , pp. 28-54
    • Storlie, C.B.1    Helton, J.C.2
  • 16
    • 34548576866 scopus 로고    scopus 로고
    • Multiple predictor smoothing methods for sensitivity analysis: Example results
    • C.B. Storlie, and J.C. Helton Multiple predictor smoothing methods for sensitivity analysis: example results Reliab Eng Sys Safety 93 1 2008 55 77
    • (2008) Reliab Eng Sys Safety , vol.93 , Issue.1 , pp. 55-77
    • Storlie, C.B.1    Helton, J.C.2
  • 17
    • 67949092696 scopus 로고    scopus 로고
    • Implementation and evaluation of nonparametric regression procedures for sensitivity analysis of computationally demanding models
    • C.B. Storlie, L.P. Swiler, J.C. Helton, and C.J. Sallaberry Implementation and evaluation of nonparametric regression procedures for sensitivity analysis of computationally demanding models Reliab Eng Syst Safety 94 2009 1735 1763
    • (2009) Reliab Eng Syst Safety , vol.94 , pp. 1735-1763
    • Storlie, C.B.1    Swiler, L.P.2    Helton, J.C.3    Sallaberry, C.J.4
  • 18
    • 2642573771 scopus 로고    scopus 로고
    • Probabilistic sensitivity analysis of complex models: A Bayesian approach
    • J. Oakley, and A. O'Hagan Probabilistic sensitivity analysis of complex models: a Bayesian approach J R Stat Soc Ser B 66 2004 751 769
    • (2004) J R Stat Soc ser B , vol.66 , pp. 751-769
    • Oakley, J.1    O'Hagan, A.2
  • 19
    • 57749204350 scopus 로고    scopus 로고
    • Calculations of Sobol indices for the Gaussian process metamodel
    • A. Marrel, B. Iooss, B. Laurent, and O. Roustant Calculations of Sobol indices for the Gaussian process metamodel Reliab Eng Syst Safety 94 3 2009 742 751
    • (2009) Reliab Eng Syst Safety , vol.94 , Issue.3 , pp. 742-751
    • Marrel, A.1    Iooss, B.2    Laurent, B.3    Roustant, O.4
  • 21
    • 0037136818 scopus 로고    scopus 로고
    • Practical approaches to construct RSHDMR component functions
    • G. Li, P. Wang, and H. Rabitz Practical approaches to construct RSHDMR component functions J Phys Chem A 106 2002 8721 8733
    • (2002) J Phys Chem A , vol.106 , pp. 8721-8733
    • Li, G.1    Wang, P.2    Rabitz, H.3
  • 22
    • 33644918017 scopus 로고    scopus 로고
    • Random samplinghigh dimensional model representation (RSHDMR) and orthogonality of its different order component functions
    • G Li, J Hu, S-W Wang, G Georgopoulos, J Shoendorf, and H Rabitz Random samplinghigh dimensional model representation (RSHDMR) and orthogonality of its different order component functions J Phys Chem A 110 7 2006 2474 2485
    • (2006) J Phys Chem A , vol.110 , Issue.7 , pp. 2474-2485
    • Li, G.1    Hu, J.2    Wang, S.-W.3    Georgopoulos, G.4    Shoendorf, J.5    Rabitz, H.6
  • 25
    • 0036171048 scopus 로고    scopus 로고
    • Stochastic finite element analysis of seismic soilstructure interaction
    • D.M. Ghiocel, and R.G. Ghanem Stochastic finite element analysis of seismic soilstructure interaction J Eng Mech 128 2002 66 77
    • (2002) J Eng Mech , vol.128 , pp. 66-77
    • Ghiocel, D.M.1    Ghanem, R.G.2
  • 27
    • 77953770787 scopus 로고    scopus 로고
    • Numerical methods to estimate the coefficients of the polynomial chaos expansion
    • Columbia University, New York, USA
    • Field RV. Numerical methods to estimate the coefficients of the polynomial chaos expansion. In: Proceeding of the 15th ASCE engineering mechanics division conference, Columbia University, New York, USA, 2002.
    • (2002) Proceeding of the 15th ASCE Engineering Mechanics Division Conference
    • Field, R.V.1
  • 28
    • 34249110888 scopus 로고    scopus 로고
    • Numerical methods and Smolyak quadrature for nonlinear stochastic partial differential equations
    • Technische Universität Braunschweig
    • Keese A, Matthies H. Numerical methods and Smolyak quadrature for nonlinear stochastic partial differential equations. Technical Report, Technische Universitt Braunschweig; 2003.
    • (2003) Technical Report
    • Keese, A.1    Matthies, H.2
  • 29
    • 3042553776 scopus 로고    scopus 로고
    • Polynomial chaos expansion with Latin hypercube sampling for estimating response variability
    • S.K. Choi, R.V. Grandhi, R.A. Canfield, and C.L. Pettit Polynomial chaos expansion with Latin hypercube sampling for estimating response variability AIAA J 45 2004 1191 1198
    • (2004) AIAA J , vol.45 , pp. 1191-1198
    • Choi, S.K.1    Grandhi, R.V.2    Canfield, R.A.3    Pettit, C.L.4
  • 30
    • 13844308726 scopus 로고    scopus 로고
    • Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations
    • H.G. Matthies, and A. Keese Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations Comput Methods Appl Mech Eng 194 2005 1295 1331
    • (2005) Comput Methods Appl Mech Eng , vol.194 , pp. 1295-1331
    • Matthies, H.G.1    Keese, A.2
  • 31
    • 33746672013 scopus 로고    scopus 로고
    • Uncertainty quantification of limit-cycle oscillations
    • P.S. Beran, C.L. Pettit, and D.R. Millman Uncertainty quantification of limit-cycle oscillations J Comput Phys 217 2006 217 247
    • (2006) J Comput Phys , vol.217 , pp. 217-247
    • Beran, P.S.1    Pettit, C.L.2    Millman, D.R.3
  • 33
    • 84901051203 scopus 로고    scopus 로고
    • Stochastic finite elements: A non-intrusive approach by regression
    • M. Berveiller, B. Sudret, and M. Lemaire Stochastic finite elements: a non-intrusive approach by regression Eur J Comput Mech 15 13 2006 81 92
    • (2006) Eur J Comput Mech , vol.15 , Issue.13 , pp. 81-92
    • Berveiller, M.1    Sudret, B.2    Lemaire, M.3
  • 34
    • 39849107510 scopus 로고    scopus 로고
    • Global sensitivity analysis using polynomial chaos expansions
    • B. Sudret Global sensitivity analysis using polynomial chaos expansions Reliab Eng Syst Safety 93 2008 964 979
    • (2008) Reliab Eng Syst Safety , vol.93 , pp. 964-979
    • Sudret, B.1
  • 36
    • 43449105872 scopus 로고    scopus 로고
    • Sparse polynomial chaos expansions and adaptive stochastic finite elements using a regression approach
    • G. Blatman, and B. Sudret Sparse polynomial chaos expansions and adaptive stochastic finite elements using a regression approach C R Mcanique 336 6 2008 518 523
    • (2008) C R Mcanique , vol.336 , Issue.6 , pp. 518-523
    • Blatman, G.1    Sudret, B.2
  • 37
    • 77549083181 scopus 로고    scopus 로고
    • An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis
    • G. Blatman, and B. Sudret An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis Probab Eng Mech 25 2010 183 197
    • (2010) Probab Eng Mech , vol.25 , pp. 183-197
    • Blatman, G.1    Sudret, B.2
  • 38
    • 78049427272 scopus 로고    scopus 로고
    • Adaptive sparse polynomial chaos expansion based on least angle regression
    • under review
    • Blatman G, Sudret B. Adaptive sparse polynomial chaos expansion based on least angle regression. J Comput Phys, 2010, under review.
    • (2010) J Comput Phys
    • Blatman, G.1    Sudret, B.2
  • 39
    • 0001744704 scopus 로고
    • A class of statistics with asymptotically normal distributions
    • W. Hoeffding A class of statistics with asymptotically normal distributions Ann Math Stat 19 1948 293 325
    • (1948) Ann Math Stat , vol.19 , pp. 293-325
    • Hoeffding, W.1
  • 40
    • 49949112371 scopus 로고    scopus 로고
    • Sparse grids and related approximation schemes for higher dimensional problems
    • Technical University of Bonn, Germany
    • Griebel M. Sparse grids and related approximation schemes for higher dimensional problems. Technical Report, Technical University of Bonn, Germany; 2006.
    • (2006) Technical Report
    • Griebel, M.1
  • 41
    • 0030121081 scopus 로고    scopus 로고
    • Importance measures in global sensitivity analysis of nonlinear models
    • T. Homma, and A. Saltelli Importance measures in global sensitivity analysis of nonlinear models Reliab Eng Syst Safety 52 1996 1 17
    • (1996) Reliab Eng Syst Safety , vol.52 , pp. 1-17
    • Homma, T.1    Saltelli, A.2
  • 42
    • 0037093163 scopus 로고    scopus 로고
    • Making best use of model evaluations to compute sensitivity indices
    • A. Saltelli Making best use of model evaluations to compute sensitivity indices Comput Phys Commun 145 2002 280 297
    • (2002) Comput Phys Commun , vol.145 , pp. 280-297
    • Saltelli, A.1
  • 45
    • 0037249229 scopus 로고    scopus 로고
    • The WienerAskey polynomial chaos for stochastic differential equations
    • D. Xiu, and G.E. Karniadakis The WienerAskey polynomial chaos for stochastic differential equations SIAM J Sci Comput 24 2 2002 619 644
    • (2002) SIAM J Sci Comput , vol.24 , Issue.2 , pp. 619-644
    • Xiu, D.1    Karniadakis, G.E.2
  • 46
    • 33745013166 scopus 로고    scopus 로고
    • Beyond WienerAskey expansions: Handling arbitrary PDFs
    • X. Wan, and G. Karniadakis Beyond WienerAskey expansions: handling arbitrary PDFs J Sci Comput 27 2006 455 464
    • (2006) J Sci Comput , vol.27 , pp. 455-464
    • Wan, X.1    Karniadakis, G.2
  • 47
    • 34248178599 scopus 로고    scopus 로고
    • Modeling physical uncertainties in dynamic stall induced fluidstructure interaction of turbine blades using arbitrary polynomial chaos
    • J.A.S. Witteveen, S. Sarkar, and H. Bijl Modeling physical uncertainties in dynamic stall induced fluidstructure interaction of turbine blades using arbitrary polynomial chaos Comput Struct 85 2007 866 878
    • (2007) Comput Struct , vol.85 , pp. 866-878
    • Witteveen, J.A.S.1    Sarkar, S.2    Bijl, H.3
  • 48
    • 16244409214 scopus 로고    scopus 로고
    • Physical systems with random uncertainties: Chaos representations with arbitrary probability measure
    • C. Soize, and R. Ghanem Physical systems with random uncertainties: chaos representations with arbitrary probability measure SIAM J Sci Comput 26 2 2004 395 410
    • (2004) SIAM J Sci Comput , vol.26 , Issue.2 , pp. 395-410
    • Soize, C.1    Ghanem, R.2
  • 49
    • 0035702613 scopus 로고    scopus 로고
    • Quasi-regression
    • J. An, and A. Owen Quasi-regression J Complexity 17 4 2001 588 607
    • (2001) J Complexity , vol.17 , Issue.4 , pp. 588-607
    • An, J.1    Owen, A.2
  • 50
    • 0018468345 scopus 로고
    • A comparison of three methods for selecting values of input variables in the analysis of output from a computer code
    • M.D. McKay, R.J. Beckman, and W.J. Conover A comparison of three methods for selecting values of input variables in the analysis of output from a computer code Technometrics 2 1979 239 245
    • (1979) Technometrics , vol.2 , pp. 239-245
    • McKay, M.D.1    Beckman, R.J.2    Conover, W.J.3
  • 52
    • 35248829606 scopus 로고    scopus 로고
    • Quasi-random numbers in stochastic finite element analysis
    • G. Blatman, B. Sudret, and M. Berveiller Quasi-random numbers in stochastic finite element analysis Mcanique Industries 8 2007 289 297
    • (2007) Mcanique Industries , vol.8 , pp. 289-297
    • Blatman, G.1    Sudret, B.2    Berveiller, M.3
  • 53
    • 0001048297 scopus 로고
    • Quadrature and interpolation formulas for tensor products of certain classes of functions
    • S.A. Smolyak Quadrature and interpolation formulas for tensor products of certain classes of functions Soviet Math Dokl 4 1963 240 243
    • (1963) Soviet Math Dokl , vol.4 , pp. 240-243
    • Smolyak, S.A.1
  • 54
    • 0141991028 scopus 로고    scopus 로고
    • Dimension-adaptive tensor-product quadrature
    • T. Gerstner, and M. Griebel Dimension-adaptive tensor-product quadrature Computing 71 2003 65 87
    • (2003) Computing , vol.71 , pp. 65-87
    • Gerstner, T.1    Griebel, M.2
  • 55
    • 67649437356 scopus 로고    scopus 로고
    • A sparse grid stochastic collocation method for elliptic partial differential equations with random input data
    • Politecnico di Milano
    • Nobile F, Tempone R, Webster C. A sparse grid stochastic collocation method for elliptic partial differential equations with random input data. Technical Report MOX Report 85, Politecnico di Milano; 2006.
    • (2006) Technical Report MOX Report 85
    • Nobile, F.1    Tempone, R.2    Webster, C.3
  • 57
    • 34447293547 scopus 로고    scopus 로고
    • Sparse grid collocation schemes for stochastic natural convection problems
    • B. Ganapathysubramanian, and N. Zabaras Sparse grid collocation schemes for stochastic natural convection problems J Comput Phys 225 2007 652 685
    • (2007) J Comput Phys , vol.225 , pp. 652-685
    • Ganapathysubramanian, B.1    Zabaras, N.2
  • 62
    • 0345544674 scopus 로고
    • The prediction sum of squares as a criterion for selecting prediction variables
    • Department of Statistics, University of Kentucky
    • Allen D. The prediction sum of squares as a criterion for selecting prediction variables. Technical Report 23, Department of Statistics, University of Kentucky; 1971.
    • (1971) Technical Report 23
    • Allen, D.1
  • 64
    • 0037530481 scopus 로고    scopus 로고
    • Adaptive response surface method using inherited Latin hypercube design points
    • G.G. Wang Adaptive response surface method using inherited Latin hypercube design points J Mech Design 125 2003 210 220
    • (2003) J Mech Design , vol.125 , pp. 210-220
    • Wang, G.G.1
  • 65
    • 33745713629 scopus 로고    scopus 로고
    • Refinement strategies for stratified sampling methods
    • C. Tong Refinement strategies for stratified sampling methods Reliab Eng Syst Safety 91 1011 2006 1257 1265
    • (2006) Reliab Eng Syst Safety , vol.91 , Issue.1011 , pp. 1257-1265
    • Tong, C.1
  • 66
    • 39749157769 scopus 로고    scopus 로고
    • Extension of Latin hypercube samples with correlated variables
    • C.J. Sallaberry, J.C. Helton, and S.C. Hora Extension of Latin hypercube samples with correlated variables Reliab Eng Syst Safety 93 2008 1047 1059
    • (2008) Reliab Eng Syst Safety , vol.93 , pp. 1047-1059
    • Sallaberry, C.J.1    Helton, J.C.2    Hora, S.C.3
  • 68
    • 0037301809 scopus 로고    scopus 로고
    • Theorems and examples on high dimensional model representation
    • I.M. Sobol' Theorems and examples on high dimensional model representation Reliab Eng Syst Safety 79 2003 187 193
    • (2003) Reliab Eng Syst Safety , vol.79 , pp. 187-193
    • Sobol, I.M.1
  • 70
    • 57649228917 scopus 로고    scopus 로고
    • Computational implementation of sampling-based approaches to the calculation of expected dose in performance assessments for the proposed high-level radioactive waste repository at Yucca Mountain, Nevada
    • J.C. Helton, and C.J. Sallaberry Computational implementation of sampling-based approaches to the calculation of expected dose in performance assessments for the proposed high-level radioactive waste repository at Yucca Mountain, Nevada Reliab Eng Syst Safety 94 2009 699 721
    • (2009) Reliab Eng Syst Safety , vol.94 , pp. 699-721
    • Helton, J.C.1    Sallaberry, C.J.2
  • 71
    • 0026107548 scopus 로고
    • Optimization algorithms for structural reliability
    • P.-L. Liu, and A. Der Kiureghian Optimization algorithms for structural reliability Struct Safety 9 1991 161 177
    • (1991) Struct Safety , vol.9 , pp. 161-177
    • Liu, P.-L.1    Der Kiureghian, A.2
  • 72
    • 33750312972 scopus 로고    scopus 로고
    • Structural reliability analysis by univariate decomposition and numerical integration
    • D. Wei, and S. Rahman Structural reliability analysis by univariate decomposition and numerical integration Probab Eng Mech 22 2007 27 38
    • (2007) Probab Eng Mech , vol.22 , pp. 27-38
    • Wei, D.1    Rahman, S.2
  • 73
    • 0002243162 scopus 로고
    • Dtermination des distributions dont les marges sont donnes
    • A. Nataf Dtermination des distributions dont les marges sont donnes C R Acad Sci Paris 225 1962 42 43
    • (1962) C R Acad Sci Paris , vol.225 , pp. 42-43
    • Nataf, A.1
  • 74
    • 43249096987 scopus 로고    scopus 로고
    • Uncertainty and sensitivity analysis for models with correlated parameters
    • C. Xu, and G.Z. Gertner Uncertainty and sensitivity analysis for models with correlated parameters Reliab Eng Syst Safety 93 2008 1563 1573
    • (2008) Reliab Eng Syst Safety , vol.93 , pp. 1563-1573
    • Xu, C.1    Gertner, G.Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.