메뉴 건너뛰기




Volumn 6322 LNAI, Issue PART 2, 2010, Pages 434-450

Exploiting causal independence in Markov logic networks: Combining undirected and directed models

Author keywords

[No Author keywords available]

Indexed keywords

CAUSAL INDEPENDENCE; EXPERIMENTAL EVALUATION; JOINT PROBABILITY; LOGICAL FORMULAS; MARKOV LOGIC NETWORKS; PARAMETER LEARNING;

EID: 78049412317     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-15883-4_28     Document Type: Conference Paper
Times cited : (8)

References (14)
  • 2
    • 26944483138 scopus 로고    scopus 로고
    • Logical Bayesian networks and their relation to other probabilistic logical models
    • Kramer, S., Pfahringer, B. eds., Springer, ILP 2005, Heidelberg
    • Fierens, D., Blockeel, H., Bruynooghe, M., Ramon, J.: Logical Bayesian networks and their relation to other probabilistic logical models. In: Kramer, S., Pfahringer, B. (eds.) ILP 2005. LNCS (LNAI), vol. 3625, pp. 121-135. Springer, Heidelberg (2005)
    • (2005) LNCS (LNAI) , vol.3625 , pp. 121-135
    • Fierens, D.1    Blockeel, H.2    Bruynooghe, M.3    Ramon, J.4
  • 4
    • 32044446066 scopus 로고    scopus 로고
    • PRL: A probabilistic relational language
    • Getoor, L., Grant, J.: PRL: A probabilistic relational language. Mach. Learn. 62 (1-2), 7-31 (2006)
    • (2006) Mach. Learn , vol.62 , Issue.1-2 , pp. 7-31
    • Getoor, L.1    Grant, J.2
  • 6
    • 0001861652 scopus 로고
    • A new look at causal independence
    • Heckerman, D., Breese, J.: A new look at causal independence. In: UAI (1994)
    • (1994) UAI
    • Heckerman, D.1    Breese, J.2
  • 7
    • 2942660501 scopus 로고    scopus 로고
    • Relational Bayesian networks
    • Jaeger, M.: Relational Bayesian networks. In: Proceedings of UAI (1997)
    • (1997) Proceedings of UAI
    • Jaeger, M.1
  • 8
    • 78049403450 scopus 로고    scopus 로고
    • Parameter learning for Relational Bayesian networks
    • Jaeger, M.: Parameter learning for Relational Bayesian networks. In: ICML (2007)
    • (2007) ICML
    • Jaeger, M.1
  • 9
    • 40249088257 scopus 로고    scopus 로고
    • Model-theoretic expressivity analysis
    • de Raedt, L., Frasconi, P., Kersting, K., Muggleton, S. H. eds., Springer, Heidelberg
    • Jaeger, M.: Model-theoretic expressivity analysis. In: de Raedt, L., Frasconi, P., Kersting, K., Muggleton, S. H. (eds.) Probabilistic Inductive Logic Programming. LNCS (LNAI), vol. 4911, pp. 325-339. Springer, Heidelberg (2008)
    • (2008) Probabilistic Inductive Logic Programming. LNCS (LNAI) , vol.4911 , pp. 325-339
    • Jaeger, M.1
  • 12
    • 84880652569 scopus 로고    scopus 로고
    • Learning probabilities for noisy first-order rules
    • Koller, D., Pfeffer, A.: Learning probabilities for noisy first-order rules. In: IJCAI (1997)
    • (1997) IJCAI
    • Koller, D.1    Pfeffer, A.2
  • 13
    • 84855663743 scopus 로고    scopus 로고
    • Learning first-order probabilistic models with combining rules. Special Issue on Probabilistic Relational Learning
    • Natarajan, S., Tadepalli, P., Dietterich, T. G., Fern, A.: Learning first-order probabilistic models with combining rules. Special Issue on Probabilistic Relational Learning, AMAI (2009)
    • (2009) AMAI
    • Natarajan, S.1    Tadepalli, P.2    Dietterich, T.G.3    Fern, A.4
  • 14
    • 0000049635 scopus 로고    scopus 로고
    • Exploiting causal independence in Bayesian network inference
    • Zhang, N., Poole, D.: Exploiting causal independence in Bayesian network inference. JAIR 5, 301-328 (1996)
    • (1996) JAIR , vol.5 , pp. 301-328
    • Zhang, N.1    Poole, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.