-
2
-
-
26944483138
-
Logical Bayesian networks and their relation to other probabilistic logical models
-
Kramer, S., Pfahringer, B. eds., Springer, ILP 2005, Heidelberg
-
Fierens, D., Blockeel, H., Bruynooghe, M., Ramon, J.: Logical Bayesian networks and their relation to other probabilistic logical models. In: Kramer, S., Pfahringer, B. (eds.) ILP 2005. LNCS (LNAI), vol. 3625, pp. 121-135. Springer, Heidelberg (2005)
-
(2005)
LNCS (LNAI)
, vol.3625
, pp. 121-135
-
-
Fierens, D.1
Blockeel, H.2
Bruynooghe, M.3
Ramon, J.4
-
3
-
-
0041779094
-
Learning probabilistic relational models
-
Dzeroski, S., Lavrac, N. eds.
-
Getoor, L., Friedman, N., Koller, D., Pfeffer, A.: Learning probabilistic relational models. In: Dzeroski, S., Lavrac, N. (eds.) Relational Data Mining (2001)
-
(2001)
Relational Data Mining
-
-
Getoor, L.1
Friedman, N.2
Koller, D.3
Pfeffer, A.4
-
4
-
-
32044446066
-
PRL: A probabilistic relational language
-
Getoor, L., Grant, J.: PRL: A probabilistic relational language. Mach. Learn. 62 (1-2), 7-31 (2006)
-
(2006)
Mach. Learn
, vol.62
, Issue.1-2
, pp. 7-31
-
-
Getoor, L.1
Grant, J.2
-
6
-
-
0001861652
-
A new look at causal independence
-
Heckerman, D., Breese, J.: A new look at causal independence. In: UAI (1994)
-
(1994)
UAI
-
-
Heckerman, D.1
Breese, J.2
-
7
-
-
2942660501
-
Relational Bayesian networks
-
Jaeger, M.: Relational Bayesian networks. In: Proceedings of UAI (1997)
-
(1997)
Proceedings of UAI
-
-
Jaeger, M.1
-
8
-
-
78049403450
-
Parameter learning for Relational Bayesian networks
-
Jaeger, M.: Parameter learning for Relational Bayesian networks. In: ICML (2007)
-
(2007)
ICML
-
-
Jaeger, M.1
-
9
-
-
40249088257
-
Model-theoretic expressivity analysis
-
de Raedt, L., Frasconi, P., Kersting, K., Muggleton, S. H. eds., Springer, Heidelberg
-
Jaeger, M.: Model-theoretic expressivity analysis. In: de Raedt, L., Frasconi, P., Kersting, K., Muggleton, S. H. (eds.) Probabilistic Inductive Logic Programming. LNCS (LNAI), vol. 4911, pp. 325-339. Springer, Heidelberg (2008)
-
(2008)
Probabilistic Inductive Logic Programming. LNCS (LNAI)
, vol.4911
, pp. 325-339
-
-
Jaeger, M.1
-
11
-
-
33749545442
-
The Alchemy system for statistical relational AI
-
University of Washington, Seattle, WA
-
Kok, S., Sumner, M., Richardson, M., Singla, P., Poon, H., Lowd, D., Domingos, P.: The Alchemy system for statistical relational AI. Technical report, Department of Computer Science and Engineering, University of Washington, Seattle, WA (2007)
-
(2007)
Technical Report, Department of Computer Science and Engineering
-
-
Kok, S.1
Sumner, M.2
Richardson, M.3
Singla, P.4
Poon, H.5
Lowd, D.6
Domingos, P.7
-
12
-
-
84880652569
-
Learning probabilities for noisy first-order rules
-
Koller, D., Pfeffer, A.: Learning probabilities for noisy first-order rules. In: IJCAI (1997)
-
(1997)
IJCAI
-
-
Koller, D.1
Pfeffer, A.2
-
13
-
-
84855663743
-
Learning first-order probabilistic models with combining rules. Special Issue on Probabilistic Relational Learning
-
Natarajan, S., Tadepalli, P., Dietterich, T. G., Fern, A.: Learning first-order probabilistic models with combining rules. Special Issue on Probabilistic Relational Learning, AMAI (2009)
-
(2009)
AMAI
-
-
Natarajan, S.1
Tadepalli, P.2
Dietterich, T.G.3
Fern, A.4
-
14
-
-
0000049635
-
Exploiting causal independence in Bayesian network inference
-
Zhang, N., Poole, D.: Exploiting causal independence in Bayesian network inference. JAIR 5, 301-328 (1996)
-
(1996)
JAIR
, vol.5
, pp. 301-328
-
-
Zhang, N.1
Poole, D.2
|