메뉴 건너뛰기




Volumn , Issue , 2009, Pages 165-202

Bayesian inference on finite mixtures of distributions

Author keywords

[No Author keywords available]

Indexed keywords


EID: 78049328205     PISSN: None     EISSN: None     Source Type: Book    
DOI: None     Document Type: Chapter
Times cited : (15)

References (53)
  • 1
    • 0000708831 scopus 로고
    • Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems
    • Antoniak, C. (1974). Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. Ann. Statist. 2 1152-1174.
    • (1974) Ann. Statist , vol.2 , pp. 1152-1174
    • Antoniak, C.1
  • 2
    • 0038383098 scopus 로고    scopus 로고
    • A Bayesian approach to the selection and testing of mixture models
    • Berkhof, J., van Mechelen, I., and Gelman, A. (2003). A Bayesian approach to the selection and testing of mixture models. Statistica Sinica. 13 423-442.
    • (2003) Statistica Sinica , vol.13 , pp. 423-442
    • Berkhof, J.1    van Mechelen, I.2    Gelman, A.3
  • 3
    • 84867186048 scopus 로고    scopus 로고
    • Variational inference for Dirichlet process mixtures
    • Blei, D. and Jordan, M. (2006). Variational inference for Dirichlet process mixtures. Bayesian Analysis. 1 121-144.
    • (2006) Bayesian Analysis , vol.1 , pp. 121-144
    • Blei, D.1    Jordan, M.2
  • 4
    • 0141688093 scopus 로고    scopus 로고
    • Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions (with discussion)
    • Brooks, S., Giudici, P. and Roberts, G. (2003). Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions (with discussion). J. Royal Statist. Society Series B. 65 3-55.
    • (2003) J. Royal Statist. Society Series B , vol.65 , pp. 3-55
    • Brooks, S.1    Giudici, P.2    Roberts, G.3
  • 5
    • 0043173919 scopus 로고    scopus 로고
    • Reversible jump, birth-and-death, and more general continuous time MCMC samplers
    • Cappe, O., Robert, C. and Ryden, T. (2003). Reversible jump, birth-and-death, and more general continuous time MCMC samplers. J. Royal Statist. Society Series B. 65 679-700.
    • (2003) J. Royal Statist. Society Series B , vol.65 , pp. 679-700
    • Cappe, O.1    Robert, C.2    Ryden, T.3
  • 6
    • 33644771354 scopus 로고    scopus 로고
    • Mixture models, latent variables and partitioned importance sampling
    • Casella, G., Robert, C. and Wells, M. (2004). Mixture models, latent variables and partitioned importance sampling. Statistical Methodology. 1 1-18.
    • (2004) Statistical Methodology , vol.1 , pp. 1-18
    • Casella, G.1    Robert, C.2    Wells, M.3
  • 7
    • 2242491935 scopus 로고    scopus 로고
    • Computational and inferential difficulties with mixtures posterior distribution
    • Celeux, G., Hurn, M. and Robert, C. (2000). Computational and inferential difficulties with mixtures posterior distribution. J. American Statist. Assoc. 95 957-979.
    • (2000) J. American Statist. Assoc , vol.95 , pp. 957-979
    • Celeux, G.1    Hurn, M.2    Robert, C.3
  • 8
    • 0041974049 scopus 로고
    • Marginal likelihood from the Gibbs output
    • Chib, S. (1995). Marginal likelihood from the Gibbs output. J. American Statist. Assoc. 90 1313-1321.
    • (1995) J. American Statist. Assoc , vol.90 , pp. 1313-1321
    • Chib, S.1
  • 9
    • 1842715143 scopus 로고    scopus 로고
    • Marginal likelihood from the Metropolis-Hastings output
    • Chib, S. and Jeliazkov, I. (2001). Marginal likelihood from the Metropolis-Hastings output. J. American Statist. Assoc. 96 270-281.
    • (2001) J. American Statist. Assoc , vol.96 , pp. 270-281
    • Chib, S.1    Jeliazkov, I.2
  • 11
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm (with discussion)
    • Dempster, A., Laird, N. and Rubin, D. (1977). Maximum likelihood from incomplete data via the EM algorithm (with discussion). J. Royal Statist. Society Series B. 39 1-38.
    • (1977) J. Royal Statist. Society Series B , vol.39 , pp. 1-38
    • Dempster, A.1    Laird, N.2    Rubin, D.3
  • 13
    • 0001244941 scopus 로고
    • Estimation of finite mixture distributions by Bayesian sampling
    • Diebolt, J. and Robert, C. (1994). Estimation of finite mixture distributions by Bayesian sampling. J. Royal Statist. Society Series B. 56 363-375.
    • (1994) J. Royal Statist. Society Series B , vol.56 , pp. 363-375
    • Diebolt, J.1    Robert, C.2
  • 15
    • 84950937290 scopus 로고
    • Bayesian density estimation and inference using mixtures
    • Escobar, M. and West, M. (1995). Bayesian density estimation and inference using mixtures. J. American Statist. Assoc. 90 577-588.
    • (1995) J. American Statist. Assoc , vol.90 , pp. 577-588
    • Escobar, M.1    West, M.2
  • 16
    • 17444397472 scopus 로고    scopus 로고
    • Direct simulation for discrete mixture distributions
    • Fearnhead, P. (2005). Direct simulation for discrete mixture distributions. Statistics and Computing. 15 125-133.
    • (2005) Statistics and Computing , vol.15 , pp. 125-133
    • Fearnhead, P.1
  • 18
    • 0001120413 scopus 로고
    • A Bayesian analysis of some nonparametric problems
    • Ferguson, T. (1973). A Bayesian analysis of some nonparametric problems. Ann. Statist. 1 209-230.
    • (1973) Ann. Statist , vol.1 , pp. 209-230
    • Ferguson, T.1
  • 19
    • 33750369868 scopus 로고    scopus 로고
    • Estimating marginal likelihoods for mixture and Markov switching models using bridge sampling techniques
    • Fruhwirth-Schnatter, S. (2004). Estimating marginal likelihoods for mixture and Markov switching models using bridge sampling techniques. The Econometrics Journal. 7 143-167.
    • (2004) The Econometrics Journal , vol.7 , pp. 143-167
    • Fruhwirth-Schnatter, S.1
  • 21
    • 0000539315 scopus 로고
    • Bayesian model choice: Asymptotics and exact calculations
    • Gelfand, A. and Dey, D. (1994). Bayesian model choice: asymptotics and exact calculations. J. Royal Statist. Society Series B 56 501-514.
    • (1994) J. Royal Statist. Society Series B , vol.56 , pp. 501-514
    • Gelfand, A.1    Dey, D.2
  • 22
    • 33847395816 scopus 로고    scopus 로고
    • Interpretation and inference in mixture models: Simple MCMC works
    • (To appear)
    • Geweke, J. (2007). Interpretation and inference in mixture models: Simple MCMC works. Comput. Statist. Data Analysis. (To appear).
    • (2007) Comput. Statist. Data Analysis
    • Geweke, J.1
  • 23
    • 0002809667 scopus 로고    scopus 로고
    • Model choice in generalized linear models: A Bayesian approach via Kullback-Leibler projections
    • Goutis, C. and Robert, C. (1998). Model choice in generalized linear models: a Bayesian approach via Kullback-Leibler projections. Biometrika 85 29-37.
    • (1998) Biometrika , vol.85 , pp. 29-37
    • Goutis, C.1    Robert, C.2
  • 27
    • 84988091828 scopus 로고
    • A Bayesian method for classification and discrimination
    • Lavine, M. and West, M. (1992). A Bayesian method for classification and discrimination. Canad. J. Statist. 20 451-461.
    • (1992) Canad. J. Statist , vol.20 , pp. 451-461
    • Lavine, M.1    West, M.2
  • 28
    • 1542573405 scopus 로고    scopus 로고
    • Real-parameter evolutionary Monte Carlo with applications to Bayesian mixture models
    • Liang, F. and Wong, W. (2001). Real-parameter evolutionary Monte Carlo with applications to Bayesian mixture models. J. American Statist. Assoc. 96 653-666.
    • (2001) J. American Statist. Assoc , vol.96 , pp. 653-666
    • Liang, F.1    Wong, W.2
  • 31
    • 33750274518 scopus 로고    scopus 로고
    • Bayesian modelling and inference on mixtures of distributions
    • (Rao, C. and Dey, D. eds). Springer-Verlag, New York
    • Marin, J.-M., Mengersen, K. and Robert, C. (2005). Bayesian modelling and inference on mixtures of distributions. In Handbook of Statistics,volume25 (Rao, C. and Dey, D. eds). Springer-Verlag, New York.
    • (2005) Handbook of Statistics , vol.25
    • Marin, J.-M.1    Mengersen, K.2    Robert, C.3
  • 34
    • 0000391986 scopus 로고    scopus 로고
    • Testing for mixtures: A Bayesian entropic approach (with discussion)
    • (Berger, J., Bernardo, J., Dawid, A., Lindley, D., and Smith, A., eds.). Oxford University Press, Oxford
    • Mengersen, K. and Robert, C. (1996). Testing for mixtures: A Bayesian entropic approach (with discussion). In Bayesian Statistics 5 (Berger, J., Bernardo, J., Dawid, A., Lindley, D., and Smith, A., eds.) 255-276. Oxford University Press, Oxford.
    • (1996) Bayesian Statistics , vol.5 , pp. 255-276
    • Mengersen, K.1    Robert, C.2
  • 35
    • 0037290163 scopus 로고    scopus 로고
    • A default Bayesian test for the number of components in a mixture
    • Moreno, E. and Liseo, B. (2003). A default Bayesian test for the number of components in a mixture. J. Statist. Plann. Inference. 111 129-142.
    • (2003) J. Statist. Plann. Inference , vol.111 , pp. 129-142
    • Moreno, E.1    Liseo, B.2
  • 37
    • 77950032550 scopus 로고    scopus 로고
    • Markov Chain sampling methods for Dirichlet process mixture models
    • Neal, R. (2000). Markov Chain sampling methods for Dirichlet process mixture models. J. Comput. Graph. Statist. 9 249-265.
    • (2000) J. Comput. Graph. Statist , vol.9 , pp. 249-265
    • Neal, R.1
  • 38
    • 34250162863 scopus 로고    scopus 로고
    • Aerosol formation over the Boreal forest in Hyytiälä, Finland: Monthly frequency and annual cycles - the roles of air mass characteristics and synoptic scale meteorology
    • Nilsson, E. D. and Kulmala, M. (2006). Aerosol formation over the Boreal forest in Hyytiälä, Finland: monthly frequency and annual cycles - the roles of air mass characteristics and synoptic scale meteorology. Atmospheric Chemistry and Physics Discussions. 6 10425-10462.
    • (2006) Atmospheric Chemistry and Physics Discussions , vol.6 , pp. 10425-10462
    • Nilsson, E.D.1    Kulmala, M.2
  • 39
    • 23544470859 scopus 로고    scopus 로고
    • Expected-posterior prior distributions for model selection
    • Póerez, J. and Berger, J. (2002). Expected-posterior prior distributions for model selection. Biometrika. 89 491-512.
    • (2002) Biometrika , vol.89 , pp. 491-512
    • Póerez, J.1    Berger, J.2
  • 40
    • 18244378520 scopus 로고    scopus 로고
    • On Bayesian analysis of mixtures with an unknown number of components (with discussion)
    • Richardson, S. and Green, P. (1997). On Bayesian analysis of mixtures with an unknown number of components (with discussion). J. Royal Statist. Society Series B. 59 731-792.
    • (1997) J. Royal Statist. Society Series B , vol.59 , pp. 731-792
    • Richardson, S.1    Green, P.2
  • 41
    • 0004085467 scopus 로고    scopus 로고
    • Second edition, Springer-Verlag, New York
    • Robert, C. (2001). The Bayesian Choice. Second edition, Springer-Verlag, New York.
    • (2001) The Bayesian Choice
    • Robert, C.1
  • 43
    • 0041724127 scopus 로고    scopus 로고
    • Reparameterisation strategies for hidden Markov models and Bayesian approaches to maximum likelihood estimation
    • Robert, C. and Titterington, M. (1998). Reparameterisation strategies for hidden Markov models and Bayesian approaches to maximum likelihood estimation. Statistics and Computing. 8 145-158.
    • (1998) Statistics and Computing , vol.8 , pp. 145-158
    • Robert, C.1    Titterington, M.2
  • 44
    • 21744460005 scopus 로고    scopus 로고
    • Practical Bayesian density estimation using mixtures of normals
    • Roeder, K. and Wasserman, L. (1997). Practical Bayesian density estimation using mixtures of normals. J. American Statist. Assoc. 92 894-902.
    • (1997) J. American Statist. Assoc , vol.92 , pp. 894-902
    • Roeder, K.1    Wasserman, L.2
  • 45
    • 0038239484 scopus 로고    scopus 로고
    • A fast distance based approach for determining the number of components in mixtures
    • Sahu, S. and Cheng, R. (2003). A fast distance based approach for determining the number of components in mixtures. Canadian J. Statistics. 31 3-22.
    • (2003) Canadian J. Statistics , vol.31 , pp. 3-22
    • Sahu, S.1    Cheng, R.2
  • 46
    • 35148901361 scopus 로고    scopus 로고
    • Nested sampling for general Bayesian computation
    • Skilling, J. (2006). Nested sampling for general Bayesian computation. Bayesian Analysis. 1 833-860.
    • (2006) Bayesian Analysis , vol.1 , pp. 833-860
    • Skilling, J.1
  • 47
    • 33749670519 scopus 로고    scopus 로고
    • Computing normalizing constants for finite mixture models via incremental mixture importance sampling (IMIS)
    • Steele, R., Raftery, A. and Emond, M. (2006). Computing normalizing constants for finite mixture models via incremental mixture importance sampling (IMIS). Journal of Computational and Graphical Statistics. 15 712-734.
    • (2006) Journal of Computational and Graphical Statistics , vol.15 , pp. 712-734
    • Steele, R.1    Raftery, A.2    Emond, M.3
  • 49
    • 0034374610 scopus 로고    scopus 로고
    • Bayesian analysis of mixture models with an unknown number of components-an alternative to reversible jump methods
    • Stephens, M. (2000). Bayesian analysis of mixture models with an unknown number of components-an alternative to reversible jump methods. Ann. Statist. 28 40-74.
    • (2000) Ann. Statist , vol.28 , pp. 40-74
    • Stephens, M.1
  • 51
    • 84950758368 scopus 로고
    • The calculation of posterior distributions by data augmentation
    • Tanner, M. and Wong, W. (1987). The calculation of posterior distributions by data augmentation. J. American Statist. Assoc. 82 528-550.
    • (1987) J. American Statist. Assoc , vol.82 , pp. 528-550
    • Tanner, M.1    Wong, W.2
  • 52
    • 0001013280 scopus 로고
    • Bayesian analysis of outliers problems using the Gibbs sampler
    • Verdinelli, I. and Wasserman, L. (1992). Bayesian analysis of outliers problems using the Gibbs sampler. Statist. Comput. 1 105-117.
    • (1992) Statist. Comput , vol.1 , pp. 105-117
    • Verdinelli, I.1    Wasserman, L.2
  • 53
    • 0034360396 scopus 로고    scopus 로고
    • Asymptotic inference for mixture models using data dependent priors
    • Wasserman, L. (2000). Asymptotic inference for mixture models using data dependent priors. J. Royal Statist. Society Series B 62 159-180.
    • (2000) J. Royal Statist. Society Series B , vol.62 , pp. 159-180
    • Wasserman, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.