메뉴 건너뛰기




Volumn 2, Issue 3, 2009, Pages 185-205

Privacy preserving categorical data analysis with unknown distortion parameters

Author keywords

[No Author keywords available]

Indexed keywords

ASSOCIATION MEASURES; CATEGORICAL DATA; DATA MINERS; DATA MINING TASKS; DISTORTION PARAMETERS; PRIVACY PRESERVING; RANDOMIZED RESPONSE; STATISTICAL ANALYSIS;

EID: 78049261783     PISSN: 18885063     EISSN: 20131631     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (9)

References (37)
  • 2
    • 0027621699 scopus 로고
    • Mining association rules between sets of items in large databases
    • R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large databases. In SIGMOD Conference, pages 207-216, 1993.
    • (1993) Sigmod Conference , pp. 207-216
    • Agrawal, R.1    Imielinski, T.2    Swami, A.3
  • 6
    • 84949472056 scopus 로고    scopus 로고
    • Microdata protection through noise addition
    • R. Brand. Microdata protection through noise addition. Lecture Notes in Computer Science, 2316:97-116, 2002.
    • (2002) Lecture Notes In Computer Science , vol.2316 , pp. 97-116
    • Brand, R.1
  • 8
    • 84913756895 scopus 로고
    • Analysis of randomized response as purposively misclassified data
    • T. T. Chen. Analysis of randomized response as purposively misclassified data. Journal of the American Statistical Association, pages 158-163, 1979.
    • (1979) Journal of The American Statistical Association , pp. 158-163
    • Chen, T.T.1
  • 9
    • 20244376130 scopus 로고    scopus 로고
    • Comparing SDC methods for micro-data on the basis of information loss and disclosure risk
    • J. Domingo-Ferrer, J.M. Mateo-Sanz, and V. Torra. Comparing SDC methods for micro-data on the basis of information loss and disclosure risk. In Proceedings of NTTS and ETK, 2001.
    • (2001) Proceedings of Ntts and Etk
    • Domingo-Ferrer, J.1    Mateo-Sanz, J.M.2    Torra, V.3
  • 13
    • 15744373612 scopus 로고    scopus 로고
    • Randomization in privacy preserving data mining
    • A. Evfimievski. Randomization in privacy preserving data mining. ACM SIGKDD Explorations Newsletter, 4(2):43-48, 2002.
    • (2002) Acm Sigkdd Explorations Newsletter , vol.4 , Issue.2 , pp. 43-48
    • Evfimievski, A.1
  • 16
    • 33749319347 scopus 로고    scopus 로고
    • Interestingness measures for data mining: A survey
    • L. Geng and H. J. Hamilton. Interestingness measures for data mining: A survey. ACM Computing Surveys, 38(3):9, 2006.
    • (2006) Acm Computing Surveys , vol.38 , Issue.3 , pp. 9
    • Geng, L.1    Hamilton, H.J.2
  • 26
    • 0442314612 scopus 로고
    • Hierarchical log-linear models not preserved by classification error
    • E. L. Korn. Hierarchical log-linear models not preserved by classification error. Journal of the American Statistical Association, 76:110-113, 1981.
    • (1981) Journal of The American Statistical Association , vol.76 , pp. 110-113
    • Korn, E.L.1
  • 27
    • 57149126815 scopus 로고    scopus 로고
    • Towards identity anonymization on graphs
    • Vancouver, Canada, ACM Press
    • K. Liu and E. Terzi. Towards identity anonymization on graphs. In Proceedings of the ACM SIGMOD Conference, Vancouver, Canada, 2008. ACM Press.
    • (2008) Proceedings of The Acm Sigmod Conference
    • Liu, K.1    Terzi, E.2
  • 29
    • 0002877253 scopus 로고
    • Discovery, analysis, and presentation of strong rules
    • G. Piatetsky-Shapiro. Discovery, analysis, and presentation of strong rules. Knowledge Discovery in Databases, pages 229-248, 1991.
    • (1991) Knowledge Discovery In Databases , pp. 229-248
    • Piatetsky-Shapiro, G.1
  • 32
    • 11344285341 scopus 로고    scopus 로고
    • Beyond market baskets: Generalizing association rules to dependence rules
    • C. Silverstein, S. Brin, and R. Motwani. Beyond market baskets: generalizing association rules to dependence rules. Data Mining and Knowledge Discovery, 2:39-68, 1998.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 39-68
    • Silverstein, C.1    Brin, S.2    Motwani, R.3
  • 36


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.