-
1
-
-
10344243553
-
Escape through a small opening: receptor trafficking in a synaptic membrane
-
Holcman D., Schuss Z. Escape through a small opening: receptor trafficking in a synaptic membrane. J. Stat. Phys. 2004, 117(5-6):975-1014.
-
(2004)
J. Stat. Phys.
, vol.117
, Issue.5-6
, pp. 975-1014
-
-
Holcman, D.1
Schuss, Z.2
-
3
-
-
42549164971
-
Narrow escape time problem: time needed for a particle to exit a confining domain through a small window
-
Bénichou O., Voituriez R. Narrow escape time problem: time needed for a particle to exit a confining domain through a small window. Phys. Rev. Lett. 2008, 100:168105.
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 168105
-
-
Bénichou, O.1
Voituriez, R.2
-
4
-
-
36148968483
-
The narrow escape problem for diffusion in cellular microdomains
-
Schuss Z., Singer A., Holcman D. The narrow escape problem for diffusion in cellular microdomains. Proc. Natl. Acad. Sci. 2007, 104(41):16098-16103.
-
(2007)
Proc. Natl. Acad. Sci.
, vol.104
, Issue.41
, pp. 16098-16103
-
-
Schuss, Z.1
Singer, A.2
Holcman, D.3
-
5
-
-
33644532542
-
Narrow escape, Part II: the circular disk
-
Singer A., Schuss Z., Holcman D. Narrow escape, Part II: the circular disk. J. Stat. Phys. 2006, 122(3):465-489.
-
(2006)
J. Stat. Phys.
, vol.122
, Issue.3
, pp. 465-489
-
-
Singer, A.1
Schuss, Z.2
Holcman, D.3
-
6
-
-
33644521764
-
Narrow escape, Part III: non-smooth domains and Riemann surfaces
-
Singer A., Schuss Z., Holcman D. Narrow escape, Part III: non-smooth domains and Riemann surfaces. J. Stat. Phys. 2006, 122(3):491-509.
-
(2006)
J. Stat. Phys.
, vol.122
, Issue.3
, pp. 491-509
-
-
Singer, A.1
Schuss, Z.2
Holcman, D.3
-
7
-
-
33644500473
-
Narrow escape, Part I
-
Singer A., Schuss Z., Holcman D., Eisenberg R.S. Narrow escape, Part I. J. Stat. Phys. 2006, 122(3):437-463.
-
(2006)
J. Stat. Phys.
, vol.122
, Issue.3
, pp. 437-463
-
-
Singer, A.1
Schuss, Z.2
Holcman, D.3
Eisenberg, R.S.4
-
8
-
-
42649133151
-
Diffusion escape through a cluster of small absorbing windows
-
(15 pp.)
-
Holcman D., Schuss Z. Diffusion escape through a cluster of small absorbing windows. J. Phys. A 2008, 41:155001. (15 pp.).
-
(2008)
J. Phys. A
, vol.41
, pp. 155001
-
-
Holcman, D.1
Schuss, Z.2
-
9
-
-
77951907993
-
-
An asymptotic analysis of the mean first passage time for narrow escape problems: Part I: two-dimensional domains, SIAM Multiscale Model. Simul. (2010) 28 pages (in press).
-
S. Pillay, M.J. Ward, A. Peirce, T. Kolokolnikov, An asymptotic analysis of the mean first passage time for narrow escape problems: Part I: two-dimensional domains, SIAM Multiscale Model. Simul. (2010) 28 pages (in press).
-
-
-
Pillay, S.1
Ward, M.J.2
Peirce, A.3
Kolokolnikov, T.4
-
10
-
-
77951899892
-
An asymptotic analysis of the mean first passage time for narrow escape problems: Part II: the sphere, SIAM Multiscale Model
-
Simul. 32 pages (in press).
-
A. Cheviakov, M.J. Ward, R. Straube, An asymptotic analysis of the mean first passage time for narrow escape problems: Part II: the sphere, SIAM Multiscale Model. Simul. (2010) 32 pages (in press).
-
(2010)
-
-
Cheviakov, A.1
Ward, M.J.2
Straube, R.3
-
11
-
-
34547369831
-
Dwell time of a Brownian molecule in a microdomain with traps and a small hole on the boundary
-
Taflia A., Holcman D. Dwell time of a Brownian molecule in a microdomain with traps and a small hole on the boundary. J. Chem. Phys. 2007, 126(23):234107.
-
(2007)
J. Chem. Phys.
, vol.126
, Issue.23
, pp. 234107
-
-
Taflia, A.1
Holcman, D.2
-
12
-
-
0005510987
-
Asymptotic variational formulae for eigenvalues
-
Swanson C.A. Asymptotic variational formulae for eigenvalues. Canad. Math. Bull. 1963, 6:15-25.
-
(1963)
Canad. Math. Bull.
, vol.6
, pp. 15-25
-
-
Swanson, C.A.1
-
13
-
-
84972569644
-
Singular variation of domains and eigenvalues of the Laplacian
-
Ozawa S. Singular variation of domains and eigenvalues of the Laplacian. Duke Math. J. 1981, 48(4):767-778.
-
(1981)
Duke Math. J.
, vol.48
, Issue.4
, pp. 767-778
-
-
Ozawa, S.1
-
14
-
-
0012357461
-
An asymptotic formula for the eigenvalues of the Laplacian in a three-dimensional domain with a small hole
-
Ozawa S. An asymptotic formula for the eigenvalues of the Laplacian in a three-dimensional domain with a small hole. J. Fac. Sci. Univ. Tokyo 1A 1983, 30(2):243-257.
-
(1983)
J. Fac. Sci. Univ. Tokyo 1A
, vol.30
, Issue.2
, pp. 243-257
-
-
Ozawa, S.1
-
15
-
-
84972571455
-
Asymptotic property of an eigenfunction of the Laplacian under singular variation of domains-the Neumann condition
-
Ozawa S. Asymptotic property of an eigenfunction of the Laplacian under singular variation of domains-the Neumann condition. Osaka J. Math. 1985, 22(4):639-655.
-
(1985)
Osaka J. Math.
, vol.22
, Issue.4
, pp. 639-655
-
-
Ozawa, S.1
-
16
-
-
0027608991
-
Strong localized perturbations of eigenvalue problems
-
Ward M.J., Keller J.B. Strong localized perturbations of eigenvalue problems. SIAM J. Appl. Math. 1993, 53(3):770-798.
-
(1993)
SIAM J. Appl. Math.
, vol.53
, Issue.3
, pp. 770-798
-
-
Ward, M.J.1
Keller, J.B.2
-
17
-
-
0027606742
-
Summing logarithmic expansions for singularly perturbed eigenvalue problems
-
Ward M.J., Henshaw W.D., Keller J.B. Summing logarithmic expansions for singularly perturbed eigenvalue problems. SIAM J. Appl. Math. 1993, 53(3):799-828.
-
(1993)
SIAM J. Appl. Math.
, vol.53
, Issue.3
, pp. 799-828
-
-
Ward, M.J.1
Henshaw, W.D.2
Keller, J.B.3
-
18
-
-
0005460971
-
Approximation of dirichlet eigenvalues on domains with small holes
-
Flucher M. Approximation of dirichlet eigenvalues on domains with small holes. J. Math. Anal. Appl. 1995, 193(1):169-199.
-
(1995)
J. Math. Anal. Appl.
, vol.193
, Issue.1
, pp. 169-199
-
-
Flucher, M.1
-
19
-
-
0035527623
-
On the placement of an obstacle or a well so as to optimize the fundamental eigenvalue
-
Harrell E.M., Kröger P., Kurata K. On the placement of an obstacle or a well so as to optimize the fundamental eigenvalue. SIAM J. Math. Anal. 2001, 33(1):240-259.
-
(2001)
SIAM J. Math. Anal.
, vol.33
, Issue.1
, pp. 240-259
-
-
Harrell, E.M.1
Kröger, P.2
Kurata, K.3
-
20
-
-
23844511916
-
Optimizing the fundamental Neumann eigenvalue for the Laplacian in a domain with small traps
-
Kolokolnikov T., Titcombe M.S., Ward M.J. Optimizing the fundamental Neumann eigenvalue for the Laplacian in a domain with small traps. European J. Appl. Math. 2005, 16(2):161-200.
-
(2005)
European J. Appl. Math.
, vol.16
, Issue.2
, pp. 161-200
-
-
Kolokolnikov, T.1
Titcombe, M.S.2
Ward, M.J.3
-
21
-
-
72049111861
-
Diffusion on a sphere with localized traps: mean first passage time, eigenvalue asymptotics, and fekete points
-
Coombs D., Straube R., Ward M.J. Diffusion on a sphere with localized traps: mean first passage time, eigenvalue asymptotics, and fekete points. SIAM J. Appl. Math. 2009, 70(1):302-332.
-
(2009)
SIAM J. Appl. Math.
, vol.70
, Issue.1
, pp. 302-332
-
-
Coombs, D.1
Straube, R.2
Ward, M.J.3
-
22
-
-
33847032231
-
Random walks and Brownian motion: a method of computation for first-passage times and related quantities in confined geometries
-
Condamin S., Bênichou O., Moreau M. Random walks and Brownian motion: a method of computation for first-passage times and related quantities in confined geometries. Phys. Rev. E 2007, 75:021111.
-
(2007)
Phys. Rev. E
, vol.75
, pp. 021111
-
-
Condamin, S.1
Bênichou, O.2
Moreau, M.3
-
24
-
-
0010829627
-
Ueber Einige Extremalaufgaben der Potential Theorie
-
Szegö G. Ueber Einige Extremalaufgaben der Potential Theorie. Math. Z. 1930, 31:583-593.
-
(1930)
Math. Z.
, vol.31
, pp. 583-593
-
-
Szegö, G.1
-
25
-
-
0012057151
-
Electrostatic capacitance of two unequal overlapping spheres and the rate of diffusion-controlled absorption
-
Felderhof B.U., Palaniappan D. Electrostatic capacitance of two unequal overlapping spheres and the rate of diffusion-controlled absorption. J. Appl. Phys. 1999, 86(11):6501-6506.
-
(1999)
J. Appl. Phys.
, vol.86
, Issue.11
, pp. 6501-6506
-
-
Felderhof, B.U.1
Palaniappan, D.2
-
27
-
-
0040166463
-
A note on the capacitance of two closely separated spheres
-
Love J.D. A note on the capacitance of two closely separated spheres. J. Inst. Math. Appl. 1979, 24:255-257.
-
(1979)
J. Inst. Math. Appl.
, vol.24
, pp. 255-257
-
-
Love, J.D.1
-
28
-
-
0003643982
-
-
Springer-Verlag, Berlin, (reprinted from the first edition of 1929)
-
Kellogg O.D. Foundations of Potential Theory 1967, Springer-Verlag, Berlin, (reprinted from the first edition of 1929).
-
(1967)
Foundations of Potential Theory
-
-
Kellogg, O.D.1
-
29
-
-
0003736179
-
-
Kluwer Academic Publishers, Dordrecht, Netherlands
-
Pintér J.D. Global Optimization in Action 1996, Kluwer Academic Publishers, Dordrecht, Netherlands.
-
(1996)
Global Optimization in Action
-
-
Pintér, J.D.1
-
30
-
-
0004032847
-
-
Kluwer Academic Publishers, Dordrecht, Boston, R. Horst, P.M. Pardalos (Eds.)
-
Handbook of Global Optimization 1995, Kluwer Academic Publishers, Dordrecht, Boston. R. Horst, P.M. Pardalos (Eds.).
-
(1995)
Handbook of Global Optimization
-
-
-
32
-
-
1842664459
-
The cutting angle method-a tool for constrained global optimization
-
Beliakov G. The cutting angle method-a tool for constrained global optimization. Optim. Methods Softw. 2004, 19(2):137-151.
-
(2004)
Optim. Methods Softw.
, vol.19
, Issue.2
, pp. 137-151
-
-
Beliakov, G.1
-
33
-
-
33845307114
-
Dynamical systems described by relational elasticities with applications to global optimization
-
Springer, New York, A. Rubinov, V. Jeyakumar (Eds.)
-
Mammadov M.A., Rubinov A., Yearwood J. Dynamical systems described by relational elasticities with applications to global optimization. Continuous Optimization: Current Trends and Modern Applications 2005, 365-385. Springer, New York. A. Rubinov, V. Jeyakumar (Eds.).
-
(2005)
Continuous Optimization: Current Trends and Modern Applications
, pp. 365-385
-
-
Mammadov, M.A.1
Rubinov, A.2
Yearwood, J.3
-
34
-
-
79951579357
-
-
GANSO Software Library: University of Ballarat, Ballarat, Victoria, Australia.
-
GANSO Software Library: University of Ballarat, Ballarat, Victoria, Australia, http://www.ballarat.edu.au/ciao.
-
-
-
-
35
-
-
0033746854
-
A periodic Green function for calculation of coulombic lattice potentials
-
Marshall S.L. A periodic Green function for calculation of coulombic lattice potentials. J. Phys.: Condens. Matter 2000, 12:4575-4601.
-
(2000)
J. Phys.: Condens. Matter
, vol.12
, pp. 4575-4601
-
-
Marshall, S.L.1
-
36
-
-
0003498504
-
-
Academic Press, San Diego.
-
Gradshteyn I.M., Ryzhik I.M. Table of Integrals, Series, and Products 1980, Academic Press, San Diego, pp. 36-41. corrected and enlarged ed.
-
(1980)
Table of Integrals, Series, and Products
, pp. 36-41
-
-
Gradshteyn, I.M.1
Ryzhik, I.M.2
|