메뉴 건너뛰기




Volumn 19, Issue 2, 2004, Pages 137-151

Cutting angle method - A tool for constrained global optimization

Author keywords

Global optimization; Lipschitz optimization; Saw tooth underestimate

Indexed keywords

ALGORITHMS; APPROXIMATION THEORY; COMPUTER AIDED MANUFACTURING; CONSTRAINT THEORY; FUNCTIONS; GLOBAL OPTIMIZATION; LINEAR EQUATIONS; LINEAR PROGRAMMING; MATHEMATICAL MODELS; SOFTWARE ENGINEERING;

EID: 1842664459     PISSN: 10556788     EISSN: None     Source Type: Journal    
DOI: 10.1080/10556780410001647177     Document Type: Article
Times cited : (29)

References (15)
  • 1
    • 0003032852 scopus 로고    scopus 로고
    • Cutting angle methods in global optimization
    • M. Andramonov, A. Rubinov and B. Glover (1999). Cutting angle methods in global optimization. Appl. Math. Lett., 12(3), 95-100.
    • (1999) Appl. Math. Lett. , vol.12 , Issue.3 , pp. 95-100
    • Andramonov, M.1    Rubinov, A.2    Glover, B.3
  • 3
    • 0002192304 scopus 로고
    • Lipschitz optimization
    • Reiner Horst and P. Pardalos (Eds.). Kluwer, Dordrecht
    • P. Hansen and B. Jaumard (1995). Lipschitz optimization. In: Reiner Horst and P. Pardalos (Eds.), Handbook of Global Optimization, pp. 407-493. Kluwer, Dordrecht.
    • (1995) Handbook of Global Optimization , pp. 407-493
    • Hansen, P.1    Jaumard, B.2
  • 4
    • 0003158358 scopus 로고
    • An algorithm for finding the absolute extremum of a function
    • S.A. Pijavski (1972). An algorithm for finding the absolute extremum of a function. USSR Comput. Math. And Math. Phys., 2, 57-67.
    • (1972) USSR Comput. Math. And Math. Phys. , vol.2 , pp. 57-67
    • Pijavski, S.A.1
  • 5
    • 0015401431 scopus 로고
    • A sequential method seeking the global maximum of a function
    • B. Shubert (1972). A sequential method seeking the global maximum of a function. SIAM J. Numer. Anal., 9, 379-388.
    • (1972) SIAM J. Numer. Anal. , vol.9 , pp. 379-388
    • Shubert, B.1
  • 7
    • 0001547779 scopus 로고
    • The cutting-plane method for solving convex programs
    • J.E. Kelley (1960). The cutting-plane method for solving convex programs. J. SIAM, 8, 703-712.
    • (1960) J. SIAM , vol.8 , pp. 703-712
    • Kelley, J.E.1
  • 9
    • 0034560801 scopus 로고    scopus 로고
    • Global minimization of increasing positively homogeneous function over the unit simplex
    • A. Bagirov and A. Rubinov (2000). Global minimization of increasing positively homogeneous function over the unit simplex. Ann. Oper. Res., 98, 171-187.
    • (2000) Ann. Oper. Res. , vol.98 , pp. 171-187
    • Bagirov, A.1    Rubinov, A.2
  • 10
    • 31244432896 scopus 로고    scopus 로고
    • Fast algorithm for the cutting angle method of global optimization
    • L.M. Batten and G. Beliakov (2002). Fast algorithm for the cutting angle method of global optimization. J. Global Optim., 24, 149-161.
    • (2002) J. Global Optim. , vol.24 , pp. 149-161
    • Batten, L.M.1    Beliakov, G.2
  • 12
    • 0022674441 scopus 로고
    • An algorithm for finding the global maximum of a multimodal, multivariate function
    • R. Mladineo (1986). An algorithm for finding the global maximum of a multimodal, multivariate function. Math. Progr., 34, 188-200.
    • (1986) Math. Progr. , vol.34 , pp. 188-200
    • Mladineo, R.1
  • 13
    • 0344550319 scopus 로고    scopus 로고
    • Geometry and combinatorics of the cutting angle method
    • G. Beliakov (2003). Geometry and combinatorics of the cutting angle method. Optimization, 52, 379-394.
    • (2003) Optimization , vol.52 , pp. 379-394
    • Beliakov, G.1
  • 14
    • 0141457370 scopus 로고    scopus 로고
    • Predicting molecular structures: Application of the cutting angle method
    • K.F. Lim, G. Beliakov and L.M. Batten (2003). Predicting molecular structures: application of the cutting angle method. Phys. Chem. Chem. Phys., 5, 3884-3890.
    • (2003) Phys. Chem. Chem. Phys. , vol.5 , pp. 3884-3890
    • Lim, K.F.1    Beliakov, G.2    Batten, L.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.