-
1
-
-
77958007544
-
-
Clarke, B.: The completion of the manifold of Riemannian metrics. preprint. arXiv: 0904. 0177v1.
-
-
-
-
2
-
-
77958007784
-
-
2 metric. Ph. D. thesis, University of Leipzig. arXiv: 0904. 0159v1 (2009).
-
-
-
-
3
-
-
0242350978
-
Geodesic flow on the diffeomorphism group of the circle
-
Constantin A., Kolev B.: Geodesic flow on the diffeomorphism group of the circle. Comment. Math. Helv. 78, 787-804 (2003).
-
(2003)
Comment. Math. Helv.
, vol.78
, pp. 787-804
-
-
Constantin, A.1
Kolev, B.2
-
4
-
-
36049055961
-
Quantum theory of gravity. I. The canonical theory
-
DeWitt B. S.: Quantum theory of gravity. I. The canonical theory. Phys. Rev. 160(5), 1113-1148 (1967).
-
(1967)
Phys. Rev.
, vol.160
, Issue.5
, pp. 1113-1148
-
-
Dewitt, B.S.1
-
5
-
-
77958003592
-
-
Ebin, D. G.: The manifold of Riemannian metrics, Global analysis. In: Chern, S.-S., Smale, S. (eds.) Proceedings of Symposia in Pure Mathematics, vol. 15, pp. 11-40. American Mathematical Society, Providence (1970).
-
-
-
-
6
-
-
0000339711
-
The basic geometry of the manifold of Riemannian metrics and of its quotient by the diffeomorphism group
-
Freed D. S., Groisser D.: The basic geometry of the manifold of Riemannian metrics and of its quotient by the diffeomorphism group. Michigan Math. J. 36, 323-344 (1989).
-
(1989)
Michigan Math. J.
, vol.36
, pp. 323-344
-
-
Freed, D.S.1
Groisser, D.2
-
7
-
-
0001876177
-
-
Gil-Medrano, O., Michor, P. W.: The Riemannian manifold of all Riemannian metrics. Q. J. Math. Oxf. Ser. (2) 42(166), 183-202. arXiv: math/9201259 (1991).
-
-
-
-
8
-
-
84966236065
-
The inverse function theorem of Nash and Moser
-
Hamilton R. S.: The inverse function theorem of Nash and Moser. Bull. Am. Math. Soc. 7(1), 65-222 (1982).
-
(1982)
Bull. Am. Math. Soc.
, vol.7
, Issue.1
, pp. 65-222
-
-
Hamilton, R.S.1
-
9
-
-
77957997573
-
-
Klingenberg, W. P. A.: Riemannian geometry. De Gruyter Studies in Mathematics, 2nd edn, vol. 1. Walter de Gruyter and Co., Berlin (1995).
-
-
-
-
10
-
-
0003267328
-
Differential and Riemannian Manifolds
-
3rd Edn., New York: Springer-Verlag
-
Lang S.: Differential and Riemannian Manifolds. Graduate Texts in Mathematics, 3rd edn., vol. 160. Springer-Verlag, New York (1995).
-
(1995)
Graduate Texts in Mathematics
, vol.160
-
-
Lang, S.1
-
11
-
-
29244431608
-
Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms
-
arXiv:math/0409303
-
Michor P. W., Mumford D.: Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms. Doc. Math. 10, 217-245 (2005) arXiv: math/0409303.
-
(2005)
Doc. Math.
, vol.10
, pp. 217-245
-
-
Michor, P.W.1
Mumford, D.2
-
12
-
-
31644434690
-
Riemannian geometries on spaces of plane curves
-
arXiv:math.DG/0312384
-
Michor P. W., Mumford D.: Riemannian geometries on spaces of plane curves. J. Eur. Math. Soc. (JEMS) 8(1), 1-48 (2006) arXiv: math. DG/0312384.
-
(2006)
J. Eur. Math. Soc. (JEMS)
, vol.8
, Issue.1
, pp. 1-48
-
-
Michor, P.W.1
Mumford, D.2
-
13
-
-
0012854771
-
Topological Vector Spaces
-
2nd Ed.,New York: Springer
-
Schaefer H. H.: Topological Vector Spaces. Graduate Texts in Mathematics, 2nd ed., vol. 3. Springer, New York (1999).
-
(1999)
Graduate Texts in Mathematics
, vol.3
-
-
Schaefer, H.H.1
|