메뉴 건너뛰기




Volumn 39, Issue 3, 2010, Pages 533-545

The metric geometry of the manifold of Riemannian metrics over a closed manifold

Author keywords

[No Author keywords available]

Indexed keywords


EID: 77957984429     PISSN: 09442669     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00526-010-0323-5     Document Type: Article
Times cited : (52)

References (14)
  • 1
    • 77958007544 scopus 로고    scopus 로고
    • Clarke, B.: The completion of the manifold of Riemannian metrics. preprint. arXiv: 0904. 0177v1.
  • 2
    • 77958007784 scopus 로고    scopus 로고
    • 2 metric. Ph. D. thesis, University of Leipzig. arXiv: 0904. 0159v1 (2009).
  • 3
    • 0242350978 scopus 로고    scopus 로고
    • Geodesic flow on the diffeomorphism group of the circle
    • Constantin A., Kolev B.: Geodesic flow on the diffeomorphism group of the circle. Comment. Math. Helv. 78, 787-804 (2003).
    • (2003) Comment. Math. Helv. , vol.78 , pp. 787-804
    • Constantin, A.1    Kolev, B.2
  • 4
    • 36049055961 scopus 로고
    • Quantum theory of gravity. I. The canonical theory
    • DeWitt B. S.: Quantum theory of gravity. I. The canonical theory. Phys. Rev. 160(5), 1113-1148 (1967).
    • (1967) Phys. Rev. , vol.160 , Issue.5 , pp. 1113-1148
    • Dewitt, B.S.1
  • 5
    • 77958003592 scopus 로고    scopus 로고
    • Ebin, D. G.: The manifold of Riemannian metrics, Global analysis. In: Chern, S.-S., Smale, S. (eds.) Proceedings of Symposia in Pure Mathematics, vol. 15, pp. 11-40. American Mathematical Society, Providence (1970).
  • 6
    • 0000339711 scopus 로고
    • The basic geometry of the manifold of Riemannian metrics and of its quotient by the diffeomorphism group
    • Freed D. S., Groisser D.: The basic geometry of the manifold of Riemannian metrics and of its quotient by the diffeomorphism group. Michigan Math. J. 36, 323-344 (1989).
    • (1989) Michigan Math. J. , vol.36 , pp. 323-344
    • Freed, D.S.1    Groisser, D.2
  • 7
    • 0001876177 scopus 로고    scopus 로고
    • Gil-Medrano, O., Michor, P. W.: The Riemannian manifold of all Riemannian metrics. Q. J. Math. Oxf. Ser. (2) 42(166), 183-202. arXiv: math/9201259 (1991).
  • 8
    • 84966236065 scopus 로고
    • The inverse function theorem of Nash and Moser
    • Hamilton R. S.: The inverse function theorem of Nash and Moser. Bull. Am. Math. Soc. 7(1), 65-222 (1982).
    • (1982) Bull. Am. Math. Soc. , vol.7 , Issue.1 , pp. 65-222
    • Hamilton, R.S.1
  • 9
    • 77957997573 scopus 로고    scopus 로고
    • Klingenberg, W. P. A.: Riemannian geometry. De Gruyter Studies in Mathematics, 2nd edn, vol. 1. Walter de Gruyter and Co., Berlin (1995).
  • 10
    • 0003267328 scopus 로고
    • Differential and Riemannian Manifolds
    • 3rd Edn., New York: Springer-Verlag
    • Lang S.: Differential and Riemannian Manifolds. Graduate Texts in Mathematics, 3rd edn., vol. 160. Springer-Verlag, New York (1995).
    • (1995) Graduate Texts in Mathematics , vol.160
    • Lang, S.1
  • 11
    • 29244431608 scopus 로고    scopus 로고
    • Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms
    • arXiv:math/0409303
    • Michor P. W., Mumford D.: Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms. Doc. Math. 10, 217-245 (2005) arXiv: math/0409303.
    • (2005) Doc. Math. , vol.10 , pp. 217-245
    • Michor, P.W.1    Mumford, D.2
  • 12
    • 31644434690 scopus 로고    scopus 로고
    • Riemannian geometries on spaces of plane curves
    • arXiv:math.DG/0312384
    • Michor P. W., Mumford D.: Riemannian geometries on spaces of plane curves. J. Eur. Math. Soc. (JEMS) 8(1), 1-48 (2006) arXiv: math. DG/0312384.
    • (2006) J. Eur. Math. Soc. (JEMS) , vol.8 , Issue.1 , pp. 1-48
    • Michor, P.W.1    Mumford, D.2
  • 13
    • 0012854771 scopus 로고    scopus 로고
    • Topological Vector Spaces
    • 2nd Ed.,New York: Springer
    • Schaefer H. H.: Topological Vector Spaces. Graduate Texts in Mathematics, 2nd ed., vol. 3. Springer, New York (1999).
    • (1999) Graduate Texts in Mathematics , vol.3
    • Schaefer, H.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.