-
1
-
-
36049055961
-
Quantum theory of gravity. I. The canonical theory
-
B. S. DeWitt, ‘Quantum theory of gravity. I. The canonical theory’, Phys. Rev. 160 (5) (1967), 1113-1148.
-
(1967)
Phys. Rev.
, vol.160
, Issue.5
, pp. 1113-1148
-
-
Dewitt, B.S.1
-
2
-
-
0002984718
-
The manifold of Riemannian metrics
-
D. Ebin, ‘The manifold of Riemannian metrics’, Proc. Symp. Pure Math. AMS 15 (1970), 11-40.
-
(1970)
Proc. Symp. Pure Math. AMS
, vol.15
, pp. 11-40
-
-
Ebin, D.1
-
3
-
-
0000339711
-
The basic geometry of the manifold of Riemannian metrics and of its quotient by the diffeomorphism group
-
D. S. Freed and D. Groisser, ‘The basic geometry of the manifold of Riemannian metrics and of its quotient by the diffeomorphism group’, Michigan Math. J. 36 (1989), 323-344.
-
(1989)
Michigan Math. J.
, vol.36
, pp. 323-344
-
-
Freed, D.S.1
Groisser, D.2
-
4
-
-
0003776123
-
-
Wiley, Chichester
-
Alfred Frolicher and Andreas Kriegl, 'Linear spaces and differentiation theory’, Pure and Applied Mathematics, J. Wiley, Chichester, 1988.
-
(1988)
Linear Spaces and Differentiation theory’, Pure and Applied Mathematics, J
-
-
Frolicher, A.1
Kriegl, A.2
-
5
-
-
84968597914
-
Steve Halperin and Ray Vanstone, ‘Connections, Curvature, and Cohomology /’, Academic Press
-
Werner Greub, Steve Halperin and Ray Vanstone, ‘Connections, Curvature, and Cohomology /’, Academic Press, New York and London, 1972.
-
(1972)
New York and London
-
-
Greub, W.1
-
6
-
-
0009437044
-
Natural transformations in differential geometry
-
G. Kainz and P. W. Michor, ‘Natural transformations in differential geometry’, Czechoslovak Math. J. 37 (1987) 584-607.
-
(1987)
Czechoslovak Math. J.
, vol.37
, pp. 584-607
-
-
Kainz, G.1
Michor, P.W.2
-
7
-
-
0000770764
-
A convenient setting for real analytic mappings
-
Andreas Kriegl and Peter W. Michor, ‘A convenient setting for real analytic mappings’, 52 p., to appear, Acta Mathematica (1990).
-
(1990)
To Appear, Acta Mathematica
, pp. 52
-
-
Kriegl, A.1
Michor, P.W.2
-
10
-
-
25444519544
-
Manifolds of smooth mappings IV: Theorem of De Rham
-
P. W. Michor, ‘Manifolds of smooth mappings IV: Theorem of De Rham’, Cahiers Top. Geo. Diff. 24 (1983), 57-86.
-
(1983)
Cahiers Top. Geo. Diff.
, vol.24
, pp. 57-86
-
-
Michor, P.W.1
-
11
-
-
0009148016
-
A convenient setting for differential geometry and global analysis I. II
-
Peter W. Michor, ‘A convenient setting for differential geometry and global analysis I. II’, Cahiers Topol. Geo. Diff. 25 (1984), 63-109, 113-178.
-
(1984)
Cahiers Topol. Geo. Diff.
, vol.25-63
, pp. 113-178
-
-
Michor, P.W.1
-
13
-
-
84968657815
-
-
Kluwer, Dordrecht
-
K. Bleuler and M. Werner (eds.)’, Kluwer, Dordrecht, 1988, pp. 345-371.
-
(1988)
, pp. 345-371
-
-
Bleuler, K.1
Werner, M.2
|