메뉴 건너뛰기




Volumn 11, Issue , 2010, Pages

Comparative study of discretization methods of microarray data for inferring transcriptional regulatory networks

Author keywords

[No Author keywords available]

Indexed keywords

COMPARATIVE STUDIES; DISCRETIZATION METHOD; GENE REGULATORY NETWORKS; MICROARRAY DATA; MODEL ALGORITHMS; NETWORK MODELING; TIME SERIES GENE EXPRESSIONS; TRANSCRIPTIONAL REGULATORY NETWORKS;

EID: 77957921133     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/1471-2105-11-520     Document Type: Article
Times cited : (46)

References (22)
  • 1
    • 3042799574 scopus 로고    scopus 로고
    • A computational algebra approach to the reverse engineering of gene regulatory networks
    • 10.1016/j.jtbi.2004.04.037, 15246788
    • Laubenbacher R, Stigler B. A computational algebra approach to the reverse engineering of gene regulatory networks. J Theor Biol 2004, 229(4):523-537. 10.1016/j.jtbi.2004.04.037, 15246788.
    • (2004) J Theor Biol , vol.229 , Issue.4 , pp. 523-537
    • Laubenbacher, R.1    Stigler, B.2
  • 2
    • 0002054202 scopus 로고    scopus 로고
    • Modeling the complexity of genetic networks: Understanding multigenic and pleiotropic regulation
    • Somogyi R, Sniegoski C. Modeling the complexity of genetic networks: Understanding multigenic and pleiotropic regulation. Complexity 1996, 1:45-63.
    • (1996) Complexity , vol.1 , pp. 45-63
    • Somogyi, R.1    Sniegoski, C.2
  • 3
    • 0032616683 scopus 로고    scopus 로고
    • Identification of genetic networks from a small number of gene expression patterns under the Boolean network model
    • Akutsu T, Miyano S, Kuhara S. Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. Pac Symp Biocomput 1999, 17-28.
    • (1999) Pac Symp Biocomput , pp. 17-28
    • Akutsu, T.1    Miyano, S.2    Kuhara, S.3
  • 5
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian networks to analyze expression data
    • 10.1089/106652700750050961, 11108481
    • Friedman N, Linial M, Nachman I, Pe'er D. Using Bayesian networks to analyze expression data. J Comput Biol 2000, 7(3-4):601-620. 10.1089/106652700750050961, 11108481.
    • (2000) J Comput Biol , vol.7 , Issue.3-4 , pp. 601-620
    • Friedman, N.1    Linial, M.2    Nachman, I.3    Pe'er, D.4
  • 6
    • 0036366689 scopus 로고    scopus 로고
    • Combining location and expression data for principled discovery of genetic regulatory network models
    • Hartemink AJ, Gifford DK, Jaakkola TS, Young RA. Combining location and expression data for principled discovery of genetic regulatory network models. Pac Symp Biocomput 2002, 437-449.
    • (2002) Pac Symp Biocomput , pp. 437-449
    • Hartemink, A.J.1    Gifford, D.K.2    Jaakkola, T.S.3    Young, R.A.4
  • 8
    • 76849109141 scopus 로고    scopus 로고
    • Identification of Regulatory Modules in Time Series Gene Expression Data Using a Linear Time Biclustering Algorithm
    • Madeira SC, Teixeira MC, Sa-Correia I, Oliveira AL. Identification of Regulatory Modules in Time Series Gene Expression Data Using a Linear Time Biclustering Algorithm. IEEE/ACM Trans Comput Biol Bioinformatics 2010, 7(1):153-165.
    • (2010) IEEE/ACM Trans Comput Biol Bioinformatics , vol.7 , Issue.1 , pp. 153-165
    • Madeira, S.C.1    Teixeira, M.C.2    Sa-Correia, I.3    Oliveira, A.L.4
  • 10
    • 37749034335 scopus 로고
    • On changing continuous attributes into ordered discrete attributes
    • Porto, Portugal: Springer-Verlag New York, Inc
    • Catlett J. On changing continuous attributes into ordered discrete attributes. Proceedings of the European working session on learning on Machine learning 1991, 164-178. Porto, Portugal: Springer-Verlag New York, Inc.
    • (1991) Proceedings of the European working session on learning on Machine learning , pp. 164-178
    • Catlett, J.1
  • 13
    • 0001457509 scopus 로고
    • Some Methods for Classification and Analysis of MultiVariate Observations
    • University of California Press, Cam LML, Neyman J
    • MacQueen JB. Some Methods for Classification and Analysis of MultiVariate Observations. Proc of the fifth Berkeley Symposium on Mathematical Statistics and Probability 1967, 1:281-297. University of California Press, Cam LML, Neyman J.
    • (1967) Proc of the fifth Berkeley Symposium on Mathematical Statistics and Probability , vol.1 , pp. 281-297
    • MacQueen, J.B.1
  • 14
    • 70349971935 scopus 로고    scopus 로고
    • ReTRN: A retriever of real transcriptional regulatory network and expression data for evaluating structure learning algorithm
    • 10.1016/j.ygeno.2009.08.009, 19712740
    • Li Y, Zhu Y, Bai X, Cai H, Ji W, Guo D. ReTRN: A retriever of real transcriptional regulatory network and expression data for evaluating structure learning algorithm. Genomics 2009, 94(5):349-354. 10.1016/j.ygeno.2009.08.009, 19712740.
    • (2009) Genomics , vol.94 , Issue.5 , pp. 349-354
    • Li, Y.1    Zhu, Y.2    Bai, X.3    Cai, H.4    Ji, W.5    Guo, D.6
  • 15
    • 33747379083 scopus 로고    scopus 로고
    • The Forkhead transcription factor Hcm1 regulates chromosome segregation genes and fills the S-phase gap in the transcriptional circuitry of the cell cycle
    • 10.1101/gad.1450606, 1553209, 16912276
    • Pramila T, Wu W, Miles S, Noble WS, Breeden LL. The Forkhead transcription factor Hcm1 regulates chromosome segregation genes and fills the S-phase gap in the transcriptional circuitry of the cell cycle. Genes Dev 2006, 20(16):2266-2278. 10.1101/gad.1450606, 1553209, 16912276.
    • (2006) Genes Dev , vol.20 , Issue.16 , pp. 2266-2278
    • Pramila, T.1    Wu, W.2    Miles, S.3    Noble, W.S.4    Breeden, L.L.5
  • 18
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper GF, Herskovits E. A Bayesian method for the induction of probabilistic networks from data. Machine Learning 1992, 9(4):309-347.
    • (1992) Machine Learning , vol.9 , Issue.4 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 19
    • 33947305781 scopus 로고    scopus 로고
    • ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context
    • 10.1186/1471-2105-7-S1-S7, 1810318, 16723010
    • Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Dalla Favera R, Califano A. ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 2006, 7(Suppl 1):S7. 10.1186/1471-2105-7-S1-S7, 1810318, 16723010.
    • (2006) BMC Bioinformatics , vol.7 , Issue.SUPPL 1
    • Margolin, A.A.1    Nemenman, I.2    Basso, K.3    Wiggins, C.4    Stolovitzky, G.5    Dalla Favera, R.6    Califano, A.7
  • 20
    • 12744261506 scopus 로고    scopus 로고
    • A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data
    • 10.1093/bioinformatics/bth463, 15308537
    • Zou M, Conzen SD. A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics 2005, 21(1):71-79. 10.1093/bioinformatics/bth463, 15308537.
    • (2005) Bioinformatics , vol.21 , Issue.1 , pp. 71-79
    • Zou, M.1    Conzen, S.D.2
  • 22
    • 36248944068 scopus 로고    scopus 로고
    • Inference of genetic regulatory networks with recurrent neural network models using particle swarm optimization
    • 10.1109/TCBB.2007.1057, 17975278
    • Xu R, Wunsch Ii D, Frank R. Inference of genetic regulatory networks with recurrent neural network models using particle swarm optimization. IEEE/ACM Trans Comput Biol Bioinform 2007, 4(4):681-692. 10.1109/TCBB.2007.1057, 17975278.
    • (2007) IEEE/ACM Trans Comput Biol Bioinform , vol.4 , Issue.4 , pp. 681-692
    • Xu, R.1    Wunsch Ii, D.2    Frank, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.