메뉴 건너뛰기




Volumn 94, Issue 5, 2009, Pages 349-354

ReTRN: A retriever of real transcriptional regulatory network and expression data for evaluating structure learning algorithm

Author keywords

Gene expression; Network topology; Scale free; Structure learning algorithm; Transcription network

Indexed keywords

ARTICLE; COMPUTER PROGRAM; CONTROLLED STUDY; GENE EXPRESSION PROFILING; GENE REGULATORY NETWORK; GENETIC DATABASE; INTERMETHOD COMPARISON; LEARNING ALGORITHM; NONHUMAN; PRIORITY JOURNAL; REAL TRANSCRIPTION REGULATORY NETWORKS; RELIABILITY; SYSTEMS BIOLOGY; TRANSCRIPTION REGULATION; VALIDATION PROCESS;

EID: 70349971935     PISSN: 08887543     EISSN: 10898646     Source Type: Journal    
DOI: 10.1016/j.ygeno.2009.08.009     Document Type: Article
Times cited : (5)

References (28)
  • 1
    • 0038483826 scopus 로고    scopus 로고
    • Emergence of scaling in random networks
    • Barab_asi A.-L., and Albert R. Emergence of scaling in random networks. Science 286 (1999) 509-512
    • (1999) Science , Issue.286 , pp. 509-512
    • Barabasi, A.-L.1    Albert, R.2
  • 2
    • 0002054202 scopus 로고    scopus 로고
    • Modeling the complexity of genetic networks: understanding multigene and pleiotropic regulation
    • Somogyi R., and Shiegoski C.A. Modeling the complexity of genetic networks: understanding multigene and pleiotropic regulation. Complexity 1 (1996) 45-63
    • (1996) Complexity , Issue.1 , pp. 45-63
    • Somogyi, R.1    Shiegoski, C.A.2
  • 3
    • 0032616683 scopus 로고    scopus 로고
    • Identifi{ligature}cation of genetic networks from a small number of gene expression patterns under the Boolean networkmodel
    • Akutsu T., Miyano S., and Kuhara S. Identifi{ligature}cation of genetic networks from a small number of gene expression patterns under the Boolean networkmodel. Proceedings of the Pacifi{ligature}c Symposium on Biocomputing (1999)
    • (1999) Proceedings of the Pacifi{ligature}c Symposium on Biocomputing
    • Akutsu, T.1    Miyano, S.2    Kuhara, S.3
  • 4
    • 22044448669 scopus 로고    scopus 로고
    • Sparse graphical Gaussian modelling of the isprenoid gene network in Arabidopsis thaliana
    • Wille A., Zimmermann P., Vranova E., and Furholz A. Sparse graphical Gaussian modelling of the isprenoid gene network in Arabidopsis thaliana. Genome Biol. 5 11 (2004) R92
    • (2004) Genome Biol. , vol.5 , Issue.11
    • Wille, A.1    Zimmermann, P.2    Vranova, E.3    Furholz, A.4
  • 6
    • 0036366689 scopus 로고    scopus 로고
    • Combining location and expression data for principled discovery of genetic regulatory network models
    • Hartemink A.J., Gifford D.K., Jaakkola T., and Young R.A. Combining location and expression data for principled discovery of genetic regulatory network models. Pac. Symp. Biocomput. 7 (2002) 437-449
    • (2002) Pac. Symp. Biocomput. , Issue.7 , pp. 437-449
    • Hartemink, A.J.1    Gifford, D.K.2    Jaakkola, T.3    Young, R.A.4
  • 7
    • 0004158155 scopus 로고    scopus 로고
    • Modeling gene expression data using dynamic Bayesian networks
    • University of California, Berkeley, CA
    • Murphy K., and Mian S. Modeling gene expression data using dynamic Bayesian networks. Technical report. Computer Science Division (1999), University of California, Berkeley, CA
    • (1999) Technical report. Computer Science Division
    • Murphy, K.1    Mian, S.2
  • 8
    • 2942694772 scopus 로고    scopus 로고
    • Artifi{ligature}cial gene networks for objective comparison of analysis algorithms
    • Mendes P., Sha W., and Ye K. Artifi{ligature}cial gene networks for objective comparison of analysis algorithms. Bioinformatics 19 Suppl. 2 (2003) ii122-ii129
    • (2003) Bioinformatics , vol.19 , Issue.SUPPL. 2
    • Mendes, P.1    Sha, W.2    Ye, K.3
  • 9
    • 12344259602 scopus 로고    scopus 로고
    • Advances to Bayesian network inference for generating causal networks from observational biological data
    • Jing Yu V., Smith A., Wang P.P., Hartemink A.J., and Jarvis E.D. Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics 20 18 (2004) 3594-3603
    • (2004) Bioinformatics , vol.20 , Issue.18 , pp. 3594-3603
    • Jing Yu, V.1    Smith, A.2    Wang, P.P.3    Hartemink, A.J.4    Jarvis, E.D.5
  • 12
    • 0032482432 scopus 로고    scopus 로고
    • Collective dynamics of 'small-world' networks
    • Watts D.J., and Strogatz S.H. Collective dynamics of 'small-world' networks. Nature 393 (1998) 440-442
    • (1998) Nature , Issue.393 , pp. 440-442
    • Watts, D.J.1    Strogatz, S.H.2
  • 13
    • 0142077573 scopus 로고    scopus 로고
    • Topology of evolving networks: local events and universality
    • Albert R., and Barabási A.L. Topology of evolving networks: local events and universality. Phys. Rev. Lett. 85 (2000) 5234-5237
    • (2000) Phys. Rev. Lett. , Issue.85 , pp. 5234-5237
    • Albert, R.1    Barabási, A.L.2
  • 15
    • 63649121239 scopus 로고    scopus 로고
    • A systematic molecular circuit design method for gene networks under biochemical time delays and molecular noises
    • Chen B.S., and Chang Y.T. A systematic molecular circuit design method for gene networks under biochemical time delays and molecular noises. BMC Syst. Biol. 2 (2008) 103
    • (2008) BMC Syst. Biol. , vol.2 , pp. 103
    • Chen, B.S.1    Chang, Y.T.2
  • 17
    • 0035319006 scopus 로고    scopus 로고
    • Computational studies of gene regulatory networks: in numero molecular biology
    • Hasty J., McMillen D., Isaacs F., Collins J.J., et al. Computational studies of gene regulatory networks: in numero molecular biology. Nat. Rev. Genet. 2 4 (2001) 268-279
    • (2001) Nat. Rev. Genet. , vol.2 , Issue.4 , pp. 268-279
    • Hasty, J.1    McMillen, D.2    Isaacs, F.3    Collins, J.J.4
  • 18
    • 0038392724 scopus 로고    scopus 로고
    • Response delays and the structure of transcription networks
    • Rosenfeld N., and Alon U. Response delays and the structure of transcription networks. J. Mol. Biol. 329 4 (2003) 645-654
    • (2003) J. Mol. Biol. , vol.329 , Issue.4 , pp. 645-654
    • Rosenfeld, N.1    Alon, U.2
  • 19
    • 12744261506 scopus 로고    scopus 로고
    • A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data
    • Zou M., and Conzen S.D. A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics 21 1 (2005) 71-79
    • (2005) Bioinformatics , vol.21 , Issue.1 , pp. 71-79
    • Zou, M.1    Conzen, S.D.2
  • 20
    • 61449181084 scopus 로고    scopus 로고
    • Fast calculation of pairwise mutual information for gene regulatory network reconstruction
    • Qiu P., Gentles A.J., and Plevritis S.K. Fast calculation of pairwise mutual information for gene regulatory network reconstruction. Comput. Methods Programs Biomed. 94 2 (2009) 177-180
    • (2009) Comput. Methods Programs Biomed. , vol.94 , Issue.2 , pp. 177-180
    • Qiu, P.1    Gentles, A.J.2    Plevritis, S.K.3
  • 21
    • 63849257557 scopus 로고    scopus 로고
    • Inference of regulatory gene interactions from expression data using three-way mutual information
    • Watkinson J., Liang K.C., Wang X., Zheng T., and Anastassiou D. Inference of regulatory gene interactions from expression data using three-way mutual information. Ann. N.Y. Acad. Sci. 1158 (2009) 302-313
    • (2009) Ann. N.Y. Acad. Sci. , vol.1158 , pp. 302-313
    • Watkinson, J.1    Liang, K.C.2    Wang, X.3    Zheng, T.4    Anastassiou, D.5
  • 23
    • 58149349958 scopus 로고    scopus 로고
    • Learning transcriptional regulatory networks from high throughput gene expression data using continuous three-way mutual information
    • Luo W., Hankenson K.D., and Woolf P.J. Learning transcriptional regulatory networks from high throughput gene expression data using continuous three-way mutual information. BMC Bioinformatics 9 (2008) 467
    • (2008) BMC Bioinformatics , vol.9 , pp. 467
    • Luo, W.1    Hankenson, K.D.2    Woolf, P.J.3
  • 24
    • 48849090016 scopus 로고    scopus 로고
    • Gene regulatory network reconstruction using conditional mutual information
    • Liang K.C., and Wang X. Gene regulatory network reconstruction using conditional mutual information. EURASIP J. Bioinform. Syst. Biol. (2008) 253894
    • (2008) EURASIP J. Bioinform. Syst. Biol. , pp. 253894
    • Liang, K.C.1    Wang, X.2
  • 26
    • 34247875975 scopus 로고    scopus 로고
    • Evaluation of gene-expression clustering via mutual information distance measure
    • Priness I., Maimon O., and Ben-Gal I. Evaluation of gene-expression clustering via mutual information distance measure. BMC Bioinformatics 8 (2007) 111
    • (2007) BMC Bioinformatics , vol.8 , pp. 111
    • Priness, I.1    Maimon, O.2    Ben-Gal, I.3
  • 27
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy
    • Peng H., Long F., and Ding C. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27 8 (2005) 1226-1238
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 28
    • 0032482432 scopus 로고    scopus 로고
    • Collective dynamics of 'small-world' networks
    • Watts D.J., and Strogatz S.H. Collective dynamics of 'small-world' networks. Nature 393 (1998) 440-442
    • (1998) Nature , Issue.393 , pp. 440-442
    • Watts, D.J.1    Strogatz, S.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.