메뉴 건너뛰기




Volumn 36, Issue 9, 2009, Pages 11470-11479

Multi-instance genetic programming for web index recommendation

Author keywords

Grammar guided genetic programming; Multiple instance learning; User modelling; Web mining

Indexed keywords

COMPUTATIONAL EXPERIMENT; GRAMMAR-GUIDED GENETIC PROGRAMMING; HIGH QUALITY; MULTIPLE INSTANCE LEARNING; NEW MODEL; PROGRAMMING ALGORITHMS; USER INTERESTS; USER MODELLING; USER MODELS; WEB INDEX RECOMMENDATION; WEB MINING;

EID: 67349112162     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2009.03.059     Document Type: Article
Times cited : (24)

References (36)
  • 2
    • 0002469253 scopus 로고    scopus 로고
    • On learning from multi-instance examples: Empirical evaluation of a theoretical approach
    • Morgan Kaufmann Publishers, San Francisco, CA, USA
    • Auer P. On learning from multi-instance examples: Empirical evaluation of a theoretical approach. ICML'97: Proceedings of the 14th international conference on machine learning (1997), Morgan Kaufmann Publishers, San Francisco, CA, USA 21-29
    • (1997) ICML'97: Proceedings of the 14th international conference on machine learning , pp. 21-29
    • Auer, P.1
  • 4
    • 37249091171 scopus 로고    scopus 로고
    • A multi-instance learning algorithm based on normalized radial basis function network
    • Chai, Y.-M., & Yang, Z.-W. (2007). A multi-instance learning algorithm based on normalized radial basis function network. LNCS (Vol. 4491).
    • (2007) LNCS , vol.4491
    • Chai, Y.-M.1    Yang, Z.-W.2
  • 6
    • 84863161940 scopus 로고    scopus 로고
    • Image categorization by learning and reasoning with regions
    • Chen Y., and Wang J.Z. Image categorization by learning and reasoning with regions. Journal of Machine Learning Research 5 (2004) 913939
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 913939
    • Chen, Y.1    Wang, J.Z.2
  • 7
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demsar J. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7 (2006) 1-30
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1
  • 8
    • 0030649484 scopus 로고    scopus 로고
    • Solving the multiple instance problem with axis-parallel rectangles
    • Dietterich T.G., Lathrop R.H., and Lozano-Perez T. Solving the multiple instance problem with axis-parallel rectangles. Artificial Intelligence 89 1-2 (1997) 31-71
    • (1997) Artificial Intelligence , vol.89 , Issue.1-2 , pp. 31-71
    • Dietterich, T.G.1    Lathrop, R.H.2    Lozano-Perez, T.3
  • 15
    • 0031704194 scopus 로고    scopus 로고
    • A note on learning from multiple-instance examples
    • Kalai A., and Blum A. A note on learning from multiple-instance examples. Machine Learning 30 1 (1998) 23-30
    • (1998) Machine Learning , vol.30 , Issue.1 , pp. 23-30
    • Kalai, A.1    Blum, A.2
  • 16
    • 0031701616 scopus 로고    scopus 로고
    • PAC learning axis-aligned rectangles with respect to product distributions from multiple-instance examples
    • Long P.M., and Tan L. PAC learning axis-aligned rectangles with respect to product distributions from multiple-instance examples. Machine Learning 30 1 (1998) 7-21
    • (1998) Machine Learning , vol.30 , Issue.1 , pp. 7-21
    • Long, P.M.1    Tan, L.2
  • 20
    • 45049085740 scopus 로고    scopus 로고
    • An em based multiple instance learning method for image classification
    • Pao H.T., Chuang S.C., Xu Y.Y., and Fu H.. An em based multiple instance learning method for image classification. Expert Systems with Applications 35 3 (2008) 1468-1472
    • (2008) Expert Systems with Applications , vol.35 , Issue.3 , pp. 1468-1472
    • Pao, H.T.1    Chuang, S.C.2    Xu, Y.Y.3    Fu, H..4
  • 21
    • 38349029576 scopus 로고    scopus 로고
    • Content-based recommendation systems
    • The adaptive web: Methods and strategies of web Personalization. Brusilovsky P., Kobsa A., and Nejdl W. (Eds), Springer
    • Pazzani M.J., and Billsus D. Content-based recommendation systems. In: Brusilovsky P., Kobsa A., and Nejdl W. (Eds). The adaptive web: Methods and strategies of web Personalization. Lecture notes in computer science Vol. 4321 (2007), Springer 325-341
    • (2007) Lecture notes in computer science , vol.4321 , pp. 325-341
    • Pazzani, M.J.1    Billsus, D.2
  • 24
    • 34249990939 scopus 로고    scopus 로고
    • Collaborative filtering recommender systems
    • The adaptive web: Methods and strategies of web personalization. Brusilovsky P., Kobsa A., and Nejdl W. (Eds), Springer
    • Schafer J.B., Herlocker D.F.J., and Sen S. Collaborative filtering recommender systems. In: Brusilovsky P., Kobsa A., and Nejdl W. (Eds). The adaptive web: Methods and strategies of web personalization. Lecture notes in computer science Vol. 4321 (2007), Springer 291-324
    • (2007) Lecture notes in computer science , vol.4321 , pp. 291-324
    • Schafer, J.B.1    Herlocker, D.F.J.2    Sen, S.3
  • 25
    • 0002442796 scopus 로고    scopus 로고
    • Machine learning in automated text categorization
    • Sebastiani F. Machine learning in automated text categorization. ACM Computing Surveys 34 1 (2002) 1-47
    • (2002) ACM Computing Surveys , vol.34 , Issue.1 , pp. 1-47
    • Sebastiani, F.1
  • 26
    • 35748982409 scopus 로고    scopus 로고
    • JCLEC: A java framework for evolutionary computation soft computing
    • Ventura S., Romero C., Zafra A., Delgado J.A., and Hervás C. JCLEC: A java framework for evolutionary computation soft computing. Soft Computing 12 4 (2008) 381-392
    • (2008) Soft Computing , vol.12 , Issue.4 , pp. 381-392
    • Ventura, S.1    Romero, C.2    Zafra, A.3    Delgado, J.A.4    Hervás, C.5
  • 27
    • 0141596676 scopus 로고    scopus 로고
    • Solving the multiple-instance problem: A lazy learning approach
    • Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
    • Wang J., and Zucker J.-D. Solving the multiple-instance problem: A lazy learning approach. ICML'00: Proceedings of the 17th international conference on machine learning (2000), Morgan Kaufmann Publishers Inc., San Francisco, CA, USA 1119-1126
    • (2000) ICML'00: Proceedings of the 17th international conference on machine learning , pp. 1119-1126
    • Wang, J.1    Zucker, J.-D.2
  • 28
    • 0003526815 scopus 로고    scopus 로고
    • Ph.D. thesis, School of Computer Science, University College, University of New South Wales, Australian Defence Force Academy, Canberra, Australia
    • Whigham, P. A. (1996). Grammatical bias for evolutionary learning. Ph.D. thesis, School of Computer Science, University College, University of New South Wales, Australian Defence Force Academy, Canberra, Australia.
    • (1996) Grammatical bias for evolutionary learning
    • Whigham, P.A.1
  • 29
    • 33847043269 scopus 로고    scopus 로고
    • Evaluation of online personalization systems: A survey of evaluation schemes and a knowledge-based approach
    • Yang Y., and Padmanabhan B. Evaluation of online personalization systems: A survey of evaluation schemes and a knowledge-based approach. Journal of Electronic Commerce Research 6 2 (2005) 112-122
    • (2005) Journal of Electronic Commerce Research , vol.6 , Issue.2 , pp. 112-122
    • Yang, Y.1    Padmanabhan, B.2
  • 31
    • 1642357513 scopus 로고    scopus 로고
    • Improve multi-instance neural networks through feature selection
    • Zhang M.-L., and Zhou Z.-H. Improve multi-instance neural networks through feature selection. Neural Processing Letters 19 1 (2004) 1-10
    • (2004) Neural Processing Letters , vol.19 , Issue.1 , pp. 1-10
    • Zhang, M.-L.1    Zhou, Z.-H.2
  • 32
    • 31444436020 scopus 로고    scopus 로고
    • Adapting rbf neural networks to multi-instance learning
    • Zhang M.-L., and Zhou Z.-H. Adapting rbf neural networks to multi-instance learning. Neural Processing Letters 23 1 (2006) 1-26
    • (2006) Neural Processing Letters , vol.23 , Issue.1 , pp. 1-26
    • Zhang, M.-L.1    Zhou, Z.-H.2
  • 34
    • 15544389390 scopus 로고    scopus 로고
    • Multi-instance learning based web mining
    • Zhou Z.-H., Jiang K., and Li M. Multi-instance learning based web mining. Applied Intelligence 22 2 (2005) 135-147
    • (2005) Applied Intelligence , vol.22 , Issue.2 , pp. 135-147
    • Zhou, Z.-H.1    Jiang, K.2    Li, M.3
  • 35
    • 33947396751 scopus 로고    scopus 로고
    • Solving multi-instance problems with classifier ensemble based on constructive clustering
    • Zhou Z.-H., and Zhang M.-L. Solving multi-instance problems with classifier ensemble based on constructive clustering. Knowledge and Information Systems 11 2 (2007) 155-170
    • (2007) Knowledge and Information Systems , vol.11 , Issue.2 , pp. 155-170
    • Zhou, Z.-H.1    Zhang, M.-L.2
  • 36
    • 84949443498 scopus 로고    scopus 로고
    • Solving multiple-instance and multiple-part learning problems with decision trees and decision rules. Application to the mutagenesis problem
    • Proceedings of the 14th Canadian conference on artificial intelligence, Ottawa, Canada pp
    • Zucker, J.-D., & Chevaleyre, Y. (2000). Solving multiple-instance and multiple-part learning problems with decision trees and decision rules. Application to the mutagenesis problem. In Proceedings of the 14th Canadian conference on artificial intelligence. Lecture notes in artificial intelligence, Ottawa, Canada (pp. 204-214).
    • (2000) Lecture notes in artificial intelligence , pp. 204-214
    • Zucker, J.-D.1    Chevaleyre, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.