메뉴 건너뛰기




Volumn 31, Issue 14, 2010, Pages 2248-2257

Scale-independent quality criteria for dimensionality reduction

Author keywords

Dimensionality reduction; Embedding; Manifold learning; Quality assessment

Indexed keywords

DIMENSIONALITY REDUCTION; DIMENSIONALITY REDUCTION TECHNIQUES; EMBEDDING; HIGH DIMENSIONAL DATA; LINEAR PROJECTIONS; LOCAL AND GLOBAL DATA; LOW-DIMENSIONAL SPACES; MANIFOLD LEARNING; NON-LINEAR TRANSFORMATIONS; QUALITY ASSESSMENT; QUALITY CRITERIA; SCALE DEPENDENCY; SCALE PARAMETER; VISUAL INTERPRETATION;

EID: 77957908161     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2010.04.013     Document Type: Article
Times cited : (78)

References (46)
  • 1
    • 0026898892 scopus 로고
    • Quantifying the neighborhood preservation of self-organizing maps
    • H.-U. Bauer, and K. Pawelzik Quantifying the neighborhood preservation of self-organizing maps IEEE Trans. Neural Networks 3 1992 570 579
    • (1992) IEEE Trans. Neural Networks , vol.3 , pp. 570-579
    • Bauer, H.-U.1    Pawelzik, K.2
  • 2
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • M. Belkin, and P. Niyogi Laplacian eigenmaps for dimensionality reduction and data representation Neural Comput. 15 6 2003 1373 1396
    • (2003) Neural Comput. , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 3
    • 9444224602 scopus 로고    scopus 로고
    • Spectral clustering and kernel PCA are learning eigenfunctions
    • Département d'Informatique et Recherche Opérationnelle, Université de Montréal, Montréal
    • Bengio, Y., Vincent, P., Paiement, J.-F., Delalleau, O., Ouimet, M., Le Roux, N., 2003. Spectral clustering and kernel PCA are learning eigenfunctions. Tech. rep. 1239, Département d'Informatique et Recherche Opérationnelle, Université de Montréal, Montréal.
    • (2003) Tech. Rep. , pp. 1239
    • Bengio, Y.1    Vincent, P.2    Paiement, J.-F.3    Delalleau, O.4    Ouimet, M.5    Le Roux, N.6
  • 4
    • 0038455092 scopus 로고    scopus 로고
    • Graph approximations to geodesics on embedded manifolds
    • Stanford University, Palo Alto, CA
    • Bernstein, M., de Silva, V., Langford, J., Tenenbaum, J., 2000. Graph approximations to geodesics on embedded manifolds. Tech. rep., Stanford University, Palo Alto, CA.
    • (2000) Tech. Rep.
    • Bernstein, M.1    De Silva, V.2    Langford, J.3    Tenenbaum, J.4
  • 7
    • 70350344696 scopus 로고    scopus 로고
    • Local multidimensional scaling for nonlinear dimension reduction, graph drawing, and proximity analysis
    • L. Chen, and A. Buja Local multidimensional scaling for nonlinear dimension reduction, graph drawing, and proximity analysis J. Amer. Statist. Assoc. 101 485 2009 209 219
    • (2009) J. Amer. Statist. Assoc. , vol.101 , Issue.485 , pp. 209-219
    • Chen, L.1    Buja, A.2
  • 8
    • 84980028038 scopus 로고
    • Vector Quantization and Projection Neural Network
    • Springer-Verlag New York
    • P. Demartines, and J. Hérault Vector Quantization and Projection Neural Network Lecture Notes in Computer Science vol. 686 1993 Springer-Verlag New York pp. 328-333
    • (1993) Lecture Notes in Computer Science , vol.686
    • Demartines, P.1    Hérault, J.2
  • 9
    • 0030736375 scopus 로고    scopus 로고
    • Curvilinear component analysis: A self-organizing neural network for nonlinear mapping of data sets
    • P. Demartines, and J. Hérault Curvilinear component analysis: a self-organizing neural network for nonlinear mapping of data sets IEEE Trans. Neural Networks 8 1 1997 148 154
    • (1997) IEEE Trans. Neural Networks , vol.8 , Issue.1 , pp. 148-154
    • Demartines, P.1    Hérault, J.2
  • 11
    • 0037948870 scopus 로고    scopus 로고
    • Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data
    • Donoho, D., Grimes, C., 2003. Hessian eigenmaps: locally linear embedding techniques for high-dimensional data. In: Proc. National Academy of Arts and Sciences, vol. 100. pp. 5591-5596.
    • (2003) Proc. National Academy of Arts and Sciences , vol.100 , pp. 5591-5596
    • Donoho, D.1    Grimes, C.2
  • 12
    • 1542535868 scopus 로고    scopus 로고
    • Curvilinear component analysis for high dimensional data representation: I. Theoretical aspects and practical use in the presence of noise
    • J. Hérault, C. Jaussions-Picaud, and A. Guérin-Dugué Curvilinear component analysis for high dimensional data representation: I. Theoretical aspects and practical use in the presence of noise J. Mira, J. Sánchez, Proc. IWANN'99 vol. II 1999 Springer Alicante, Spain 635 644
    • (1999) Proc. IWANN'99 , vol.2 , pp. 635-644
    • Hérault, J.1    Jaussions-Picaud, C.2    Guérin-Dugué, A.3
  • 15
    • 0020068152 scopus 로고
    • Self-organization of topologically correct feature maps
    • T. Kohonen Self-organization of topologically correct feature maps Biological Cybernet. 43 1982 59 69
    • (1982) Biological Cybernet. , vol.43 , pp. 59-69
    • Kohonen, T.1
  • 16
    • 0026113980 scopus 로고
    • Nonlinear principal component analysis using autoassociative neural networks
    • M. Kramer Nonlinear principal component analysis using autoassociative neural networks AIChE J. 37 2 1991 233 243
    • (1991) AIChE J. , vol.37 , Issue.2 , pp. 233-243
    • Kramer, M.1
  • 17
    • 0041654220 scopus 로고
    • Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis
    • J. Kruskal Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis Psychometrika 29 1964 1 28
    • (1964) Psychometrika , vol.29 , pp. 1-28
    • Kruskal, J.1
  • 18
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner Gradient-based learning applied to document recognition Proc. IEEE 86 11 1998 2278 2324
    • (1998) Proc. IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 19
    • 1542680971 scopus 로고    scopus 로고
    • Curvilinear distance analysis versus isomap
    • J. Lee, and M. Verleysen Curvilinear distance analysis versus isomap Neurocomputing 57 2004 49 76
    • (2004) Neurocomputing , vol.57 , pp. 49-76
    • Lee, J.1    Verleysen, M.2
  • 21
  • 23
    • 61849137245 scopus 로고    scopus 로고
    • Quality assessment of dimensionality reduction: Rank-based criteria
    • J. Lee, and M. Verleysen Quality assessment of dimensionality reduction: rank-based criteria Neurocomputing 72 7-9 2009 1431 1443
    • (2009) Neurocomputing , vol.72 , Issue.79 , pp. 1431-1443
    • Lee, J.1    Verleysen, M.2
  • 25
    • 0029270805 scopus 로고
    • Artificial neural networks for feature extraction and multivariate data projection
    • J. Mao, and A. Jain Artificial neural networks for feature extraction and multivariate data projection IEEE Trans. Neural Networks 6 2 1995 296 317
    • (1995) IEEE Trans. Neural Networks , vol.6 , Issue.2 , pp. 296-317
    • Mao, J.1    Jain, A.2
  • 27
    • 0000621817 scopus 로고
    • Data compression, feature extraction, and autoassociation in feedforward neural networks
    • E. Oja Data compression, feature extraction, and autoassociation in feedforward neural networks T. Kohonen, K. Mäkisara, O. Simula, J. Kangas, Artificial Neural Networks vol. 1 1991 Elsevier Science Publishers, B.V. North-Holland 737 745
    • (1991) Artificial Neural Networks , vol.1 , pp. 737-745
    • Oja, E.1
  • 28
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • S. Roweis, and L. Saul Nonlinear dimensionality reduction by locally linear embedding Science 290 5500 2000 2323 2326
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.1    Saul, L.2
  • 31
    • 84887006810 scopus 로고
    • A nonlinear mapping algorithm for data structure analysis
    • J. Sammon A nonlinear mapping algorithm for data structure analysis IEEE Trans. Comput. CC-18 5 1969 401 409
    • (1969) IEEE Trans. Comput. , vol.CC-18 , Issue.5 , pp. 401-409
    • Sammon, J.1
  • 32
    • 2342517502 scopus 로고    scopus 로고
    • Think globally, fit locally: Unsupervised learning of nonlinear manifolds
    • L. Saul, and S. Roweis Think globally, fit locally: unsupervised learning of nonlinear manifolds J. Machine Learn. Res. 4 2003 119 155
    • (2003) J. Machine Learn. Res. , vol.4 , pp. 119-155
    • Saul, L.1    Roweis, S.2
  • 33
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • B. Schölkopf, A. Smola, and K.-R. Müller Nonlinear component analysis as a kernel eigenvalue problem Neural Comput. 10 1998 1299 1319
    • (1998) Neural Comput. , vol.10 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.2    Müller, K.-R.3
  • 34
    • 34250926052 scopus 로고
    • The analysis of proximities: Multidimensional scaling with an unknown distance function (parts 1 and 2)
    • R. Shepard The analysis of proximities: multidimensional scaling with an unknown distance function (parts 1 and 2) Psychometrika 27 1962 pp. 125-140, 219-249
    • (1962) Psychometrika , vol.27
    • Shepard, R.1
  • 35
    • 34250297158 scopus 로고
    • Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features
    • Y. Takane, F. Young, and J. de Leeuw Nonmetric individual differences multidimensional scaling: an alternating least squares method with optimal scaling features Psychometrika 42 1977 7 67
    • (1977) Psychometrika , vol.42 , pp. 7-67
    • Takane, Y.1    Young, F.2    De Leeuw, J.3
  • 37
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • J. Tenenbaum, V. de Silva, and J. Langford A global geometric framework for nonlinear dimensionality reduction Science 290 5500 2000 2319 2323
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.1    De Silva, V.2    Langford, J.3
  • 38
    • 84950351930 scopus 로고
    • Multidimensional scaling, I: Theory and method
    • W. Torgerson Multidimensional scaling, I: Theory and method Psychometrika 17 1952 401 419
    • (1952) Psychometrika , vol.17 , pp. 401-419
    • Torgerson, W.1
  • 41
    • 84958976659 scopus 로고    scopus 로고
    • Neighborhood preservation in nonlinear projection methods: An experimental study
    • Dorffner, G., Bischof, H., Hornik, K. (Eds.) Springer, Berlin
    • Venna, J., Kaski, S., 2001. Neighborhood preservation in nonlinear projection methods: an experimental study. In: Dorffner, G., Bischof, H., Hornik, K. (Eds.), Proc. ICANN 2001, Springer, Berlin, pp. 485-491.
    • (2001) Proc. ICANN 2001 , pp. 485-491
    • Venna, J.1    Kaski, S.2
  • 42
    • 33746617306 scopus 로고    scopus 로고
    • Local multidimensional scaling
    • J. Venna, and S. Kaski Local multidimensional scaling Neural Networks 19 2006 889 899
    • (2006) Neural Networks , vol.19 , pp. 889-899
    • Venna, J.1    Kaski, S.2
  • 43
    • 0031097231 scopus 로고    scopus 로고
    • Topology preservation in self-organizing feature maps: Exact definition and measurement
    • T. Villmann, R. Der, M. Herrmann, and T. Martinetz Topology preservation in self-organizing feature maps: exact definition and measurement IEEE Trans. Neural Networks 8 2 1997 256 266
    • (1997) IEEE Trans. Neural Networks , vol.8 , Issue.2 , pp. 256-266
    • Villmann, T.1    Der, R.2    Herrmann, M.3    Martinetz, T.4
  • 44
    • 33744949513 scopus 로고    scopus 로고
    • Unsupervised learning of image manifolds by semidefinite programming
    • K. Weinberger, and L. Saul Unsupervised learning of image manifolds by semidefinite programming Internat. J. Comput. Vision 70 1 2006 77 90
    • (2006) Internat. J. Comput. Vision , vol.70 , Issue.1 , pp. 77-90
    • Weinberger, K.1    Saul, L.2
  • 46
    • 0002361037 scopus 로고
    • Discussion of a set of points in terms of their mutual distances
    • G. Young, and A. Householder Discussion of a set of points in terms of their mutual distances Psychometrika 3 1938 19 22
    • (1938) Psychometrika , vol.3 , pp. 19-22
    • Young, G.1    Householder, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.