메뉴 건너뛰기




Volumn 23, Issue 7, 2010, Pages 1112-1120

Genetically evolved radial basis function network based prediction of drill flank wear

Author keywords

Drilling; Flank wear; Genetic algorithm; Radial basis function network; Self growing algorithm

Indexed keywords

COMPUTATIONALLY EFFICIENT; DRILLING HOLES; DRILLING PROCESS; ERROR MINIMIZATION; FLANK WEAR; HIDDEN LAYERS; HIGH-SPEED STEELS; K-MEANS CLUSTERING ALGORITHM; RADIAL BASIS FUNCTIONS; SELF GROWING ALGORITHM; TRAINING PROCEDURES; TWO STAGE; UNSUPERVISED TRAINING; WORK PIECES;

EID: 77957872563     PISSN: 09521976     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.engappai.2010.02.012     Document Type: Article
Times cited : (14)

References (19)
  • 1
    • 12844283500 scopus 로고    scopus 로고
    • A two-stage evolutionary algorithm for variable selection in the development of RBF neural network models
    • A. Alexandridis, P. Patrinos, H. Sarimveis, and G. Tsekouras A two-stage evolutionary algorithm for variable selection in the development of RBF neural network models Chemometrics Intell. Lab. Sys. 75 2 2005 149 162
    • (2005) Chemometrics Intell. Lab. Sys. , vol.75 , Issue.2 , pp. 149-162
    • Alexandridis, A.1    Patrinos, P.2    Sarimveis, H.3    Tsekouras, G.4
  • 2
    • 0034272428 scopus 로고    scopus 로고
    • Application of radial basis function networks for solar-array modeling and maximum power-point prediction
    • A.A.l. Amoudi, and L. Zhang Application of radial basis function networks for solar-array modeling and maximum power-point prediction IEE Proc. Gener. Transm. Distrib. 147 5 2000 310 316
    • (2000) IEE Proc. Gener. Transm. Distrib. , vol.147 , Issue.5 , pp. 310-316
    • A, L.A.A.1    Zhang, L.2
  • 3
    • 0028835062 scopus 로고
    • Radial basis function network configuration using genetic algorithms
    • S.A. Billings, and G.L. Zheng Radial basis function network configuration using genetic algorithms Neural Networks 8 6 1995 877 890
    • (1995) Neural Networks , vol.8 , Issue.6 , pp. 877-890
    • Billings, S.A.1    Zheng, G.L.2
  • 4
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function networks
    • S. Chen, C.F.N. Cowan, and P.M. Grant Orthogonal least squares learning algorithm for radial basis function networks IEEE Trans. Neural Networks 2 2 1991 302 309
    • (1991) IEEE Trans. Neural Networks , vol.2 , Issue.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 6
    • 34248996874 scopus 로고    scopus 로고
    • Evaluation of the performance of backpropagation and radial basis function neural networks in predicting the drill flank wear
    • S. Garg, S.K. Pal, and D. Chakraborty Evaluation of the performance of backpropagation and radial basis function neural networks in predicting the drill flank wear Neural Comput. Appl. 16 45 2007 407 417
    • (2007) Neural Comput. Appl. , vol.16 , Issue.45 , pp. 407-417
    • Garg, S.1    Pal, S.K.2    Chakraborty, D.3
  • 7
    • 0038355079 scopus 로고    scopus 로고
    • Automatic basis selection techniques for RBF networks
    • A. Ghodsi, and D. Schuurmans Automatic basis selection techniques for RBF networks Neural Networks 16 2003 809 816
    • (2003) Neural Networks , vol.16 , pp. 809-816
    • Ghodsi, A.1    Schuurmans, D.2
  • 8
    • 0742321288 scopus 로고    scopus 로고
    • Multiobjective evolutionary optimization of the size, shape and position parameters of radial basis function networks for function approximation
    • J. Gonzlez, I. Rojas, J. Ortega, H. Pomares, F.J. Fernndez, and A.F. Daz Multiobjective evolutionary optimization of the size, shape and position parameters of radial basis function networks for function approximation IEEE Trans. Neural Networks 14 6 2003 1478 1495
    • (2003) IEEE Trans. Neural Networks , vol.14 , Issue.6 , pp. 1478-1495
    • Gonzlez, J.1    Rojas, I.2    Ortega, J.3    Pomares, H.4    Fernndez, F.J.5    Daz, A.F.6
  • 9
    • 22544433202 scopus 로고    scopus 로고
    • Modelling of plasma etching process using radial basis function network and genetic algorithm
    • DOI 10.1016/j.vacuum.2005.03.001, PII S0042207X05001624
    • D. Han, S.B. Moon, K. Park, B. Kim, K.K. Lee, and N.J. Kim Modelling of plasma etching process using radial basis function network and genetic algorithm Vacuum 79 2005 140 147 (Pubitemid 41014057)
    • (2005) Vacuum , vol.79 , Issue.3-4 , pp. 140-147
    • Han, D.1    Moon, S.B.2    Park, K.3    Kim, B.4    Lee, K.K.5    Kim, N.J.6
  • 10
    • 0033104456 scopus 로고    scopus 로고
    • Multi-sensor integration for on-line tool wear estimation through radial basis function networks and fuzzy neural network
    • R.J. Kuo, and P.H. Cohen Multi-sensor integration for on-line tool wear estimation through radial basis function networks and fuzzy neural network Neural Networks 12 1999 355 370
    • (1999) Neural Networks , vol.12 , pp. 355-370
    • Kuo, R.J.1    Cohen, P.H.2
  • 11
    • 33748437938 scopus 로고    scopus 로고
    • Evolutionary system for automatically constructing and adapting radial basis function networks
    • D. Manrique, J. Ros, and A. Rodrguez-Paton Evolutionary system for automatically constructing and adapting radial basis function networks Neurocomputing 69 1618 2006 2268 2283
    • (2006) Neurocomputing , vol.69 , Issue.1618 , pp. 2268-2283
    • Manrique, D.1    Ros, J.2    Rodrguez-Paton, A.3
  • 12
    • 0000672424 scopus 로고
    • Fast learning in networks of locally tuned processing units
    • J.E. Moody, and C.J. Darken Fast learning in networks of locally tuned processing units Neural Comput. 1 2 1989 281 294
    • (1989) Neural Comput. , vol.1 , Issue.2 , pp. 281-294
    • Moody, J.E.1    Darken, C.J.2
  • 13
    • 27544458557 scopus 로고    scopus 로고
    • Learning methods for radial basis function networks
    • R. Neruda, and P. Kudova Learning methods for radial basis function networks Fut Gener. Comput. Sys. 21 7 2005 1131 1142
    • (2005) Fut Gener. Comput. Sys. , vol.21 , Issue.7 , pp. 1131-1142
    • Neruda, R.1    Kudova, P.2
  • 14
    • 0346099405 scopus 로고    scopus 로고
    • A new algorithm for developing dynamic radial basis function neural network models based on genetic algorithms
    • H. Sarimveis, A. Alexandridis, S. Mazarakis, and G. Bafas A new algorithm for developing dynamic radial basis function neural network models based on genetic algorithms Comput. Chem. Eng. 28 2004 209 217
    • (2004) Comput. Chem. Eng. , vol.28 , pp. 209-217
    • Sarimveis, H.1    Alexandridis, A.2    Mazarakis, S.3    Bafas, G.4
  • 15
    • 0035307307 scopus 로고    scopus 로고
    • Time series forecasting using GA-tuned radial basis functions
    • A.F. Sheta, and K.D. Jong Time series forecasting using GA-tuned radial basis functions Inf. Sci. 133 2001 221 228
    • (2001) Inf. Sci. , vol.133 , pp. 221-228
    • Sheta, A.F.1    Jong, K.D.2
  • 16
    • 34249062410 scopus 로고    scopus 로고
    • The application of a radial basis function neural network for predicting the surface roughness in a turning process
    • D.K. Sonar, U.S. Dixit, and D.K. Ojha The application of a radial basis function neural network for predicting the surface roughness in a turning process Int. J. Adv. Manuf. Technol. 36 2005 400 451
    • (2005) Int. J. Adv. Manuf. Technol. , vol.36 , pp. 400-451
    • Sonar, D.K.1    Dixit, U.S.2    Ojha, D.K.3
  • 17
    • 0036568640 scopus 로고    scopus 로고
    • A genetic algorithmic approach for optimization of surface roughness prediction model
    • P.V.S. Suresh, P.V. Rao, and S.G. Deshmukh A genetic algorithmic approach for optimization of surface roughness prediction model Int. J. Mach. Tools Manuf. 42 2002 675 680
    • (2002) Int. J. Mach. Tools Manuf. , vol.42 , pp. 675-680
    • Suresh, P.V.S.1    Rao, P.V.2    Deshmukh, S.G.3
  • 18
    • 0028208116 scopus 로고
    • Evolving space-filling curves to distribute radial basis functions over an input space
    • B.A. Whitehead, and T.D. Choate Evolving space-filling curves to distribute radial basis functions over an input space IEEE Trans. Neural Networks 5 1994 15 23
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 15-23
    • Whitehead, B.A.1    Choate, T.D.2
  • 19
    • 28844464693 scopus 로고    scopus 로고
    • Genetic algorithm-trained radial basis function neural networks for modelling photovoltaic panels
    • L. Zhang, and Y.F. Bai Genetic algorithm-trained radial basis function neural networks for modelling photovoltaic panels Eng. Appl. Artif. Intell. 18 2005 833 844
    • (2005) Eng. Appl. Artif. Intell. , vol.18 , pp. 833-844
    • Zhang, L.1    Bai, Y.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.