메뉴 건너뛰기




Volumn 82, Issue 4, 2010, Pages

Quantitative study of two- and three-dimensional strong localization of matter waves by atomic scatterers

Author keywords

[No Author keywords available]

Indexed keywords

3D SYSTEMS; BOUND STATE; DENSITY OF LOCALIZED STATE; DENSITY OF STATE; HIGH ENERGY; LOCALIZATION LENGTH; MATTER WAVES; POSITIVE ENERGIES; QUANTITATIVE STUDY; SCATTERING LENGTH; THREE-DIMENSIONAL (3D); TWO-DIMENSIONAL (2D) SYSTEMS;

EID: 77957840494     PISSN: 10502947     EISSN: 10941622     Source Type: Journal    
DOI: 10.1103/PhysRevA.82.043602     Document Type: Article
Times cited : (15)

References (39)
  • 1
    • 24244444170 scopus 로고
    • PHRVAO 0031-899X 10.1103/PhysRev.109.1492
    • P. W. Anderson, Phys. Rev. PHRVAO 0031-899X 10.1103/PhysRev.109.1492 109, 1492 (1958).
    • (1958) Phys. Rev. , vol.109 , pp. 1492
    • Anderson, P.W.1
  • 2
    • 0040793613 scopus 로고
    • RMPHAT 0034-6861 10.1103/RevModPhys.57.287
    • P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. RMPHAT 0034-6861 10.1103/RevModPhys.57.287 57, 287 (1985).
    • (1985) Rev. Mod. Phys. , vol.57 , pp. 287
    • Lee, P.A.1    Ramakrishnan, T.V.2
  • 3
    • 12044250476 scopus 로고
    • RMPHAT 0034-6861 10.1103/RevModPhys.66.261
    • D. Belitz and T. R. Kirkpatrick, Rev. Mod. Phys. RMPHAT 0034-6861 10.1103/RevModPhys.66.261 66, 261 (1994).
    • (1994) Rev. Mod. Phys. , vol.66 , pp. 261
    • Belitz, D.1    Kirkpatrick, T.R.2
  • 4
    • 56549120610 scopus 로고    scopus 로고
    • RMPHAT 0034-6861 10.1103/RevModPhys.80.1355
    • F. Evers and A. D. Mirlin, Rev. Mod. Phys. RMPHAT 0034-6861 10.1103/RevModPhys.80.1355 80, 1355 (2008).
    • (2008) Rev. Mod. Phys. , vol.80 , pp. 1355
    • Evers, F.1    Mirlin, A.D.2
  • 8
    • 27144528186 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.95.020401
    • U. Gavish and Y. Castin, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.95.020401 95, 020401 (2005).
    • (2005) Phys. Rev. Lett. , vol.95 , pp. 020401
    • Gavish, U.1    Castin, Y.2
  • 9
    • 33746048423 scopus 로고    scopus 로고
    • PLRAAN 1050-2947 10.1103/PhysRevA.74.013616
    • P. Massignan and Y. Castin, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.74.013616 74, 013616 (2006).
    • (2006) Phys. Rev. A , vol.74 , pp. 013616
    • Massignan, P.1    Castin, Y.2
  • 10
    • 0344686202 scopus 로고    scopus 로고
    • JPAPEH 0953-4075 10.1088/0953-4075/36/22/013
    • P. Vignolo, Z. Akdeniz, and M. P. Tosi, J. Phys. B JPAPEH 0953-4075 10.1088/0953-4075/36/22/013 36, 4535 (2003);
    • (2003) J. Phys. B , vol.36 , pp. 4535
    • Vignolo, P.1    Akdeniz, Z.2    Tosi, M.P.3
  • 11
    • 35548939098 scopus 로고    scopus 로고
    • PLRAAN 1050-2947 10.1103/PhysRevA.76.043625
    • B. Horstmann, J. I. Cirac, and T. Roscilde, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.76.043625 76, 043625 (2007);
    • (2007) Phys. Rev. A , vol.76 , pp. 043625
    • Horstmann, B.1    Cirac, J.I.2    Roscilde, T.3
  • 15
    • 33747117649 scopus 로고    scopus 로고
    • Multiply occupied sites can lead to three-body losses, and to the formation of weakly bound BB or AB dimers, leading to nonelastic scattering of the matter wave. There are several ways to avoid multiple occupancies: to use polarized fermions as scatterers, to use a very small filling factor to make the multiple occupancy statistically irrelevant, or to use experimental techniques such as the radiofrequency one of PRLTAO 0031-9007 10.1103/PhysRevLett.97.060403
    • Multiply occupied sites can lead to three-body losses, and to the formation of weakly bound BB or AB dimers, leading to nonelastic scattering of the matter wave. There are several ways to avoid multiple occupancies: to use polarized fermions as scatterers, to use a very small filling factor to make the multiple occupancy statistically irrelevant, or to use experimental techniques such as the radiofrequency one of S. Fölling, A. Widera, T. Müller, F. Gerbier, and I. Bloch, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett. 97.060403 97, 060403 (2006) to filter out the doubly occupied sites.
    • (2006) Phys. Rev. Lett. , vol.97 , pp. 060403
    • Fölling, S.1    Widera, A.2    Müller, T.3    Gerbier, F.4    Bloch, I.5
  • 16
    • 77957843498 scopus 로고    scopus 로고
    • The effective scattering length generally differs from the free space scattering length a, due to the effect of the confining potential experienced by the B atoms: aeff/aho is a function of a/aho and of the A-B mass ratio, as calculated in [9].
    • The effective scattering length generally differs from the free space scattering length a, due to the effect of the confining potential experienced by the B atoms: a eff / a ho is a function of a / a ho and of the A - B mass ratio, as calculated in [9].
  • 18
    • 77957833447 scopus 로고    scopus 로고
    • Ph.D. thesis of Université Paris 6
    • E. Mandonnet, Ph.D. thesis of Université Paris 6, 2000, online at [http://tel.ccsd.cnrs.fr/tel-00011872];
    • (2000)
    • Mandonnet, E.1
  • 21
    • 0001970675 scopus 로고
    • ADPHAH 0001-8732 10.1080/00018738200101358
    • P. Erdos and R. C. Herndon, Adv. Phys. ADPHAH 0001-8732 10.1080/00018738200101358 31, 65 (1982).
    • (1982) Adv. Phys. , vol.31 , pp. 65
    • Erdos, P.1    Herndon, R.C.2
  • 22
    • 77957855015 scopus 로고    scopus 로고
    • /3/m as units of length and energy, respectively.
    • / 3 / m as units of length and energy, respectively.
  • 23
    • 77957844621 scopus 로고    scopus 로고
    • The energy of the ABn bound states between an A atom and nB atomic scatterers can be calculated by using Eq. (23) in 3D, or its 2D equivalent ln(aeff/d)=-mi∞(E) from (41), where the eigenvalues m∞ of M∞can be calculated analytically in the case of n≤4.
    • The energy of the ABn bound states between an A atom and nB atomic scatterers can be calculated by using Eq. (23) in 3D, or its 2D equivalent ln(aeff/d)=-mi∞(E) from (41), where the eigenvalues m∞ of M∞can be calculated analytically in the case of n≤4.
  • 24
    • 77957824565 scopus 로고    scopus 로고
    • +. Then to first order in δq, E-Edim=-2δq/(maeff). Replacing q with its zeroth order value 1/aeff in the off-diagonal terms of M(E), one obtains the eigenvalue problem (E-Edim)Di=Σj≠ ittrans(rij)Dj.
    • +. Then to first order in δq, E-Edim=-2δq/(maeff). Replacing q with its zeroth order value 1/aeff in the off-diagonal terms of M(E), one obtains the eigenvalue problem (E-Edim)Di=Σj≠ ittrans(rij)Dj.
  • 25
    • 77957838126 scopus 로고    scopus 로고
    • As there is no averaging over disorder, the spatial oscillations in the Green's function are not washed out. For values of ξ larger than the ones presented in the figure, that is for ξ getting larger than the lattice constant d, our fitting procedure based on Eq. (10) is no longer appropriate.
    • As there is no averaging over disorder, the spatial oscillations in the Green's function are not washed out. For values of ξ larger than the ones presented in the figure, that is for ξ getting larger than the lattice constant d, our fitting procedure based on Eq. (10) is no longer appropriate.
  • 26
    • 77957826704 scopus 로고    scopus 로고
    • This picture is expected for a quadratic matter wave dispersion relation, as considered here. For more complicated dispersion relations, as in the Hubbard model, there may be several mobility edges [3].
    • This picture is expected for a quadratic matter wave dispersion relation, as considered here. For more complicated dispersion relations, as in the Hubbard model, there may be several mobility edges [3].
  • 27
    • 77957832097 scopus 로고    scopus 로고
    • The generalized Hellmann-Feynman theorem is dmi∞(z)/dz=vi *•[dM∞(z)/dz]u→i, where ui and vi are the right and left eigenvectors, respectively, corresponding to the eigenvalue mi∞(z), and normalized as vi*•ui=1. Since M∞(z) is complex symmetric, one has vi=ui* so that it suffices to calculate the right eigenvector numerically.
    • The generalized Hellmann-Feynman theorem is dmi∞(z)/dz=vi *•[dM∞(z)/dz]u→i, where ui and vi are the right and left eigenvectors, respectively, corresponding to the eigenvalue mi∞(z), and normalized as vi*•ui=1. Since M∞(z) is complex symmetric, one has vi=ui* so that it suffices to calculate the right eigenvector numerically.
  • 28
    • 77957843318 scopus 로고    scopus 로고
    • We note the presence of a narrow vertical band of resonances for small values of the energy E in the first energy pixel of Fig. 7(b). Indeed, for very small values of E an extra density of long-lived resonances appear, with values of aeff spreading over a large interval [including negative values out of the range of Fig. 7(b)]. Nonetheless, these resonances are not spatially localized, and are eliminated by the filtering used in Fig. 7(d). These long-lived extended states correspond to kR≤1, which suggest that they are related to finite size effects.
    • We note the presence of a narrow vertical band of resonances for small values of the energy E in the first energy pixel of Fig. 7(b). Indeed, for very small values of E an extra density of long-lived resonances appear, with values of a eff spreading over a large interval [including negative values out of the range of Fig. 7(b)]. Nonetheless, these resonances are not spatially localized, and are eliminated by the filtering used in Fig. 7(d). These long-lived extended states correspond to kR ≤ 1, which suggest that they are related to finite size effects.
  • 29
    • 77957857075 scopus 로고    scopus 로고
    • For a uniformly distributed state in the sphere of radius R, one has Vp1/3/R=(4π/3)1/3 1.6 and σ/R=(3/5)1/2 0.77.
    • For a uniformly distributed state in the sphere of radius R, one has Vp1/3/R=(4π/3)1/3 1.6 and σ/R=(3/5)1/2 0.77.
  • 30
    • 77957837624 scopus 로고    scopus 로고
    • -1. The participation length lp=(∫Rdxψ(x)2) 2/(∫Rdxψ(x)4) is thus lP=2Nd/(N+1) and has a finite limit 2d when N→+∞. On the contrary, the root mean square size σ diverges as dN/√12. On the contrary, the root mean square size σ diverges as dN/√12.
    • -1. The participation length lp=(∫Rdxψ(x)2) 2/(∫Rdxψ(x)4) is thus lP=2Nd/(N+1) and has a finite limit 2d when N→+∞
  • 32
    • 34249751009 scopus 로고    scopus 로고
    • JPAPEH 0953-4075 10.1088/0953-4075/40/11/009
    • L. Pricoupenko, and M. Olshanii, J. Phys. B JPAPEH 0953-4075 10.1088/0953-4075/40/11/009 40, 2065 (2007).
    • (2007) J. Phys. B , vol.40 , pp. 2065
    • Pricoupenko, L.1    Olshanii, M.2
  • 34
    • 0030144388 scopus 로고    scopus 로고
    • PRPLCM 0370-1573 10.1016/0370-1573(95)00065-8
    • A. Lagendijk and B. A. van Tiggelen, Phys. Rep. PRPLCM 0370-1573 10.1016/0370-1573(95)00065-8 270, 143 (1996);
    • (1996) Phys. Rep. , vol.270 , pp. 143
    • Lagendijk, A.1    Van Tiggelen, B.A.2
  • 35
    • 0035443439 scopus 로고    scopus 로고
    • PRPLCM 1539-3755 10.1103/PhysRevE.64.036605
    • A. Derode, A. Tourin, and M. Fink, Phys. Rev. E PRPLCM 1539-3755 10.1103/PhysRevE.64.036605 64, 036605 (2001);
    • (2001) Phys. Rev. e , vol.64 , pp. 036605
    • Derode, A.1    Tourin, A.2    Fink, M.3
  • 37
    • 7044235687 scopus 로고    scopus 로고
    • JPICEI 1155-4339 10.1051/jp4:2004116004
    • Y. Castin, J. Phys. IV France JPICEI 1155-4339 10.1051/jp4:2004116004 116, 89 (2004).
    • (2004) J. Phys. IV France , vol.116 , pp. 89
    • Castin, Y.1
  • 38
    • 77957835887 scopus 로고    scopus 로고
    • In this regime, one could however imagine a highly improbable realization of disorder where a cavity of radius l with no scatterers exists inside the system. If 2/(ml2)<ρgeff there may be a localized state inside this cavity with 0
    • In this regime, one could however imagine a highly improbable realization of disorder where a cavity of radius l with no scatterers exists inside the system. If 2 / (m l 2) < ρ g eff there may be a localized state inside this cavity with 0 < E < ρ g eff.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.