메뉴 건너뛰기




Volumn 37, Issue 9, 2010, Pages 6567-6578

Interval competitive agglomeration clustering algorithm

Author keywords

Clustering algorithm; Fuzzy c means clustering algorithm; Interval competitive agglomeration; Symbolic interval values data

Indexed keywords

AGGLOMERATION; FUZZY CLUSTERING;

EID: 77957834794     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2010.02.129     Document Type: Article
Times cited : (20)

References (24)
  • 1
    • 0041743064 scopus 로고    scopus 로고
    • From the statistics of data to the statistics of knowledge: Symbolic data analysis
    • DOI 10.1198/016214503000242
    • Billard, L., & Diday, E. (2003). From the statistics of data to the statistics of knowledge: Symbolic data analysis. Journal of the American Statistical Association, 98(462), 470-487. (Pubitemid 36931569)
    • (2003) Journal of the American Statistical Association , vol.98 , Issue.462 , pp. 470-487
    • Billard, L.1    Diday, E.2
  • 4
    • 0032154982 scopus 로고    scopus 로고
    • A monothetic clustering method
    • PII S0167865598000877
    • Chavent, M. (1998). A monothetic clustering method. Pattern Recognition Letter, 19, 989-996. (Pubitemid 128426763)
    • (1998) Pattern Recognition Letters , vol.19 , Issue.11 , pp. 989-996
    • Chavent, M.1
  • 5
    • 0012393548 scopus 로고    scopus 로고
    • Dynamical clustering algorithm of interval data: Optimization of an adequacy criterion based on Hausdorff distance
    • A. Sokolowski & H.-H. Bock (Eds.), Heidelberg: Springer-Verlag
    • Chavent, M., & Lechevallier, Y. (2002). Dynamical clustering algorithm of interval data: Optimization of an adequacy criterion based on Hausdorff distance. In A. Sokolowski & H.-H. Bock (Eds.), Classification, clustering and data analysis (pp. 53-59). Heidelberg: Springer-Verlag.
    • (2002) Classification, Clustering and Data Analysis , pp. 53-59
    • Chavent, M.1    Lechevallier, Y.2
  • 6
    • 33845495645 scopus 로고    scopus 로고
    • Fuzzy c-means clustering methods for symbolic interval data
    • De Carvalho, F. A. T. (2007). Fuzzy c-means clustering methods for symbolic interval data. Pattern Recognition Letter, 28(6), 423-437.
    • (2007) Pattern Recognition Letter , vol.28 , Issue.6 , pp. 423-437
    • De Carvalho, F.A.T.1
  • 7
    • 28044438528 scopus 로고    scopus 로고
    • Adaptive Hausdorff distances and dynamic clustering of symbolic interval data
    • DOI 10.1016/j.patrec.2005.08.014, PII S0167865505002278
    • De Carvalho, F. A. T., Souza, R. M. C. R., Chavent, M., & Lechevallier, Y. (2006). Adaptive Hausdorff distances and dynamic clustering of symbolic data. Pattern Recognition Letter, 27(3), 167-179. (Pubitemid 41689830)
    • (2006) Pattern Recognition Letters , vol.27 , Issue.3 , pp. 167-179
    • De Carvalho, F.D.A.T.1    De Souza, R.M.C.R.2    Chavent, M.3    Lechevallier, Y.4
  • 9
    • 0031192257 scopus 로고    scopus 로고
    • Clustering by competitive agglomeration
    • PII S0031320396001409
    • Frigui, H., & Krishnapuram, R. (1997). Clustering by competitive agglomeration. Pattern Recognition, 30(7), 1109-1119. (Pubitemid 127406518)
    • (1997) Pattern Recognition , vol.30 , Issue.7 , pp. 1109-1119
    • Frigui, H.1    Krishnapuram, R.2
  • 11
    • 0346760234 scopus 로고    scopus 로고
    • An iterative relocation algorithm for classifying symbolic data
    • W. Gaul et al. (Eds.), Springer-Verlag
    • Gordon, A. D. (2000). An iterative relocation algorithm for classifying symbolic data. In W. Gaul et al. (Eds.), Data analysis: Scientific modeling and practical application (pp. 7-23). Springer-Verlag.
    • (2000) Data Analysis: Scientific Modeling and Practical Application , pp. 7-23
    • Gordon, A.D.1
  • 12
    • 0025902445 scopus 로고
    • Symbolic clustering using a new dissimilarity measure
    • DOI 10.1016/0031-3203(91)90022-W
    • Gowda, K. C., & Diday, E. (1991). Symbolic clustering using a new dissimilarity measure. Pattern Recognition, 24(6), 567-578. (Pubitemid 21650079)
    • (1991) Pattern Recognition , vol.24 , Issue.6 , pp. 567-578
    • Chidananda Gowda, K.1    Diday, E.2
  • 14
    • 0029359322 scopus 로고
    • Divisive clustering of symbolic objects using the concepts of both similarity and dissimilarity
    • Gowda, K. C., & Ravi, T. R. (1995a). Divisive clustering of symbolic objects using the concepts of both similarity and dissimilarity. Pattern Recognition, 28(8), 1277-1282.
    • (1995) Pattern Recognition , vol.28 , Issue.8 , pp. 1277-1282
    • Gowda, K.C.1    Ravi, T.R.2
  • 15
    • 0029326165 scopus 로고
    • Agglomerative clustering of symbolic objects using the concepts of both similarity and dissimilarity
    • Gowda, K. C., & Ravi, T. R. (1995b). Agglomerative clustering of symbolic objects using the concepts of both similarity and dissimilarity. Pattern Recognition Letter, 16, 647-652.
    • (1995) Pattern Recognition Letter , vol.16 , pp. 647-652
    • Gowda, K.C.1    Ravi, T.R.2
  • 16
    • 0033279868 scopus 로고    scopus 로고
    • Clustering of symbolic objects using gravitational approach
    • Gowda, K. C., & Ravi, T. R. (1999). Clustering of symbolic objects using gravitational approach. IEEE Transactions on Systems Man Cybernetic, 29(6), 888-894.
    • (1999) IEEE Transactions on Systems Man Cybernetic , vol.29 , Issue.6 , pp. 888-894
    • Gowda, K.C.1    Ravi, T.R.2
  • 17
    • 4644323250 scopus 로고    scopus 로고
    • Multivalued type dissimilarity measure and concept of mutual dissimilarity value for clustering symbolic patterns
    • Guru, D. S., & Kiranagi, B. B. (2005). Multivalued type dissimilarity measure and concept of mutual dissimilarity value for clustering symbolic patterns. Pattern Recognition, 38, 151-256.
    • (2005) Pattern Recognition , vol.38 , pp. 151-256
    • Guru, D.S.1    Kiranagi, B.B.2
  • 18
    • 2942618322 scopus 로고    scopus 로고
    • Multivalued type proximity measure and concept of mutual similarity value useful for clustering symbolic patterns
    • DOI 10.1016/j.patrec.2004.03.016, PII S016786550400090X
    • Guru, D. S., Kiranagi, B. B., & Nagabhushan, P. (2004). Multivalued type proximity measure and concept of mutual similarity value useful for clustering symbolic patterns. Pattern Recognition Letter, 25, 1203-1213. (Pubitemid 38763662)
    • (2004) Pattern Recognition Letters , vol.25 , Issue.10 , pp. 1203-1213
    • Guru, D.S.1    Kiranagi, B.B.2    Nagabhushan, P.3
  • 19
    • 0028408227 scopus 로고
    • Generalized Minkowski metrics for mixed feature type data analysis
    • Ichino, M., & Yaguchi, H. (1994). Generalized Minkowski metrics for mixed feature type data analysis. IEEE Transactions on Systems Man Cybernetic, 24(4), 698-708.
    • (1994) IEEE Transactions on Systems Man Cybernetic , vol.24 , Issue.4 , pp. 698-708
    • Ichino, M.1    Yaguchi, H.2
  • 22
    • 0029415780 scopus 로고
    • A conceptual version of the K-means algorithm
    • DOI 10.1016/0167-8655(95)00075-R
    • Ralambondrainy, H. (1995). A conceptual version of the k-means algorithm. Pattern Recognition Letter, 16, 1147-1157. (Pubitemid 26442196)
    • (1995) Pattern Recognition Letters , vol.16 , Issue.11 , pp. 1147-1157
    • Ralambondrainy, H.1
  • 23
    • 0346724786 scopus 로고    scopus 로고
    • Clustering of interval data based on city-block distances
    • DOI 10.1016/j.patrec.2003.10.016
    • Souza, R. M. C. R., & De Carvalho, F. A. T. (2004). Clustering of interval data based on city-block distances. Pattern Recognition Letter, 25(3), 353-365. (Pubitemid 38062596)
    • (2004) Pattern Recognition Letters , vol.25 , Issue.3 , pp. 353-365
    • De Souza, R.M.C.R.1    De Carvalho, F.A.T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.