-
1
-
-
0041743064
-
From the statistics of data to the statistics of knowledge: Symbolic data analysis
-
DOI 10.1198/016214503000242
-
Billard, L., & Diday, E. (2003). From the statistics of data to the statistics of knowledge: Symbolic data analysis. Journal of the American Statistical Association, 98(462), 470-487. (Pubitemid 36931569)
-
(2003)
Journal of the American Statistical Association
, vol.98
, Issue.462
, pp. 470-487
-
-
Billard, L.1
Diday, E.2
-
4
-
-
0032154982
-
A monothetic clustering method
-
PII S0167865598000877
-
Chavent, M. (1998). A monothetic clustering method. Pattern Recognition Letter, 19, 989-996. (Pubitemid 128426763)
-
(1998)
Pattern Recognition Letters
, vol.19
, Issue.11
, pp. 989-996
-
-
Chavent, M.1
-
5
-
-
0012393548
-
Dynamical clustering algorithm of interval data: Optimization of an adequacy criterion based on Hausdorff distance
-
A. Sokolowski & H.-H. Bock (Eds.), Heidelberg: Springer-Verlag
-
Chavent, M., & Lechevallier, Y. (2002). Dynamical clustering algorithm of interval data: Optimization of an adequacy criterion based on Hausdorff distance. In A. Sokolowski & H.-H. Bock (Eds.), Classification, clustering and data analysis (pp. 53-59). Heidelberg: Springer-Verlag.
-
(2002)
Classification, Clustering and Data Analysis
, pp. 53-59
-
-
Chavent, M.1
Lechevallier, Y.2
-
6
-
-
33845495645
-
Fuzzy c-means clustering methods for symbolic interval data
-
De Carvalho, F. A. T. (2007). Fuzzy c-means clustering methods for symbolic interval data. Pattern Recognition Letter, 28(6), 423-437.
-
(2007)
Pattern Recognition Letter
, vol.28
, Issue.6
, pp. 423-437
-
-
De Carvalho, F.A.T.1
-
7
-
-
28044438528
-
Adaptive Hausdorff distances and dynamic clustering of symbolic interval data
-
DOI 10.1016/j.patrec.2005.08.014, PII S0167865505002278
-
De Carvalho, F. A. T., Souza, R. M. C. R., Chavent, M., & Lechevallier, Y. (2006). Adaptive Hausdorff distances and dynamic clustering of symbolic data. Pattern Recognition Letter, 27(3), 167-179. (Pubitemid 41689830)
-
(2006)
Pattern Recognition Letters
, vol.27
, Issue.3
, pp. 167-179
-
-
De Carvalho, F.D.A.T.1
De Souza, R.M.C.R.2
Chavent, M.3
Lechevallier, Y.4
-
9
-
-
0031192257
-
Clustering by competitive agglomeration
-
PII S0031320396001409
-
Frigui, H., & Krishnapuram, R. (1997). Clustering by competitive agglomeration. Pattern Recognition, 30(7), 1109-1119. (Pubitemid 127406518)
-
(1997)
Pattern Recognition
, vol.30
, Issue.7
, pp. 1109-1119
-
-
Frigui, H.1
Krishnapuram, R.2
-
11
-
-
0346760234
-
An iterative relocation algorithm for classifying symbolic data
-
W. Gaul et al. (Eds.), Springer-Verlag
-
Gordon, A. D. (2000). An iterative relocation algorithm for classifying symbolic data. In W. Gaul et al. (Eds.), Data analysis: Scientific modeling and practical application (pp. 7-23). Springer-Verlag.
-
(2000)
Data Analysis: Scientific Modeling and Practical Application
, pp. 7-23
-
-
Gordon, A.D.1
-
12
-
-
0025902445
-
Symbolic clustering using a new dissimilarity measure
-
DOI 10.1016/0031-3203(91)90022-W
-
Gowda, K. C., & Diday, E. (1991). Symbolic clustering using a new dissimilarity measure. Pattern Recognition, 24(6), 567-578. (Pubitemid 21650079)
-
(1991)
Pattern Recognition
, vol.24
, Issue.6
, pp. 567-578
-
-
Chidananda Gowda, K.1
Diday, E.2
-
14
-
-
0029359322
-
Divisive clustering of symbolic objects using the concepts of both similarity and dissimilarity
-
Gowda, K. C., & Ravi, T. R. (1995a). Divisive clustering of symbolic objects using the concepts of both similarity and dissimilarity. Pattern Recognition, 28(8), 1277-1282.
-
(1995)
Pattern Recognition
, vol.28
, Issue.8
, pp. 1277-1282
-
-
Gowda, K.C.1
Ravi, T.R.2
-
15
-
-
0029326165
-
Agglomerative clustering of symbolic objects using the concepts of both similarity and dissimilarity
-
Gowda, K. C., & Ravi, T. R. (1995b). Agglomerative clustering of symbolic objects using the concepts of both similarity and dissimilarity. Pattern Recognition Letter, 16, 647-652.
-
(1995)
Pattern Recognition Letter
, vol.16
, pp. 647-652
-
-
Gowda, K.C.1
Ravi, T.R.2
-
16
-
-
0033279868
-
Clustering of symbolic objects using gravitational approach
-
Gowda, K. C., & Ravi, T. R. (1999). Clustering of symbolic objects using gravitational approach. IEEE Transactions on Systems Man Cybernetic, 29(6), 888-894.
-
(1999)
IEEE Transactions on Systems Man Cybernetic
, vol.29
, Issue.6
, pp. 888-894
-
-
Gowda, K.C.1
Ravi, T.R.2
-
17
-
-
4644323250
-
Multivalued type dissimilarity measure and concept of mutual dissimilarity value for clustering symbolic patterns
-
Guru, D. S., & Kiranagi, B. B. (2005). Multivalued type dissimilarity measure and concept of mutual dissimilarity value for clustering symbolic patterns. Pattern Recognition, 38, 151-256.
-
(2005)
Pattern Recognition
, vol.38
, pp. 151-256
-
-
Guru, D.S.1
Kiranagi, B.B.2
-
18
-
-
2942618322
-
Multivalued type proximity measure and concept of mutual similarity value useful for clustering symbolic patterns
-
DOI 10.1016/j.patrec.2004.03.016, PII S016786550400090X
-
Guru, D. S., Kiranagi, B. B., & Nagabhushan, P. (2004). Multivalued type proximity measure and concept of mutual similarity value useful for clustering symbolic patterns. Pattern Recognition Letter, 25, 1203-1213. (Pubitemid 38763662)
-
(2004)
Pattern Recognition Letters
, vol.25
, Issue.10
, pp. 1203-1213
-
-
Guru, D.S.1
Kiranagi, B.B.2
Nagabhushan, P.3
-
19
-
-
0028408227
-
Generalized Minkowski metrics for mixed feature type data analysis
-
Ichino, M., & Yaguchi, H. (1994). Generalized Minkowski metrics for mixed feature type data analysis. IEEE Transactions on Systems Man Cybernetic, 24(4), 698-708.
-
(1994)
IEEE Transactions on Systems Man Cybernetic
, vol.24
, Issue.4
, pp. 698-708
-
-
Ichino, M.1
Yaguchi, H.2
-
21
-
-
84893405732
-
Data clustering: A review
-
Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: A review. ACM Computing Surveys, 31(3), 264-323.
-
(1999)
ACM Computing Surveys
, vol.31
, Issue.3
, pp. 264-323
-
-
Jain, A.K.1
Murty, M.N.2
Flynn, P.J.3
-
22
-
-
0029415780
-
A conceptual version of the K-means algorithm
-
DOI 10.1016/0167-8655(95)00075-R
-
Ralambondrainy, H. (1995). A conceptual version of the k-means algorithm. Pattern Recognition Letter, 16, 1147-1157. (Pubitemid 26442196)
-
(1995)
Pattern Recognition Letters
, vol.16
, Issue.11
, pp. 1147-1157
-
-
Ralambondrainy, H.1
-
23
-
-
0346724786
-
Clustering of interval data based on city-block distances
-
DOI 10.1016/j.patrec.2003.10.016
-
Souza, R. M. C. R., & De Carvalho, F. A. T. (2004). Clustering of interval data based on city-block distances. Pattern Recognition Letter, 25(3), 353-365. (Pubitemid 38062596)
-
(2004)
Pattern Recognition Letters
, vol.25
, Issue.3
, pp. 353-365
-
-
De Souza, R.M.C.R.1
De Carvalho, F.A.T.2
-
24
-
-
0346129589
-
A dynamical clustering algorithm for symbolic data
-
für Klassifikation e.V. University of Munich, March 13
-
Verde, R., De Carvalho, F. A. T., & Lechevallier, Y. (2001). A dynamical clustering algorithm for symbolic data. In Tutorial on symbolic data analysis held during the 25th annual conference of the Gesellschaft für Klassifikation e.V. University of Munich, March 13.
-
(2001)
Tutorial on Symbolic Data Analysis Held During the 25th Annual Conference of the Gesellschaft
-
-
Verde, R.1
De Carvalho, F.A.T.2
Lechevallier, Y.3
|