메뉴 건너뛰기




Volumn 37, Issue 12, 2010, Pages 8432-8444

A logistic radial basis function regression method for discrimination of cover crops in olive orchards

Author keywords

Cover crops; Evolutionary neural networks; Multiclassification; MultiLogistic regression; Radial basis functions; Spectral signature

Indexed keywords

AGRONOMY; CROPS; ENVIRONMENTAL IMPACT; EVOLUTIONARY ALGORITHMS; FARMS; FORESTRY; FUNCTIONS; HEAT CONDUCTION; IMAGE SEGMENTATION; INFRARED DEVICES; LOCATION; MAXIMUM LIKELIHOOD; MAXIMUM LIKELIHOOD ESTIMATION; NEURAL NETWORKS; OPTIMIZATION; ORCHARDS; RADIAL BASIS FUNCTION NETWORKS; SOILS; TREES (MATHEMATICS);

EID: 77957824338     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2010.05.035     Document Type: Article
Times cited : (9)

References (53)
  • 1
    • 67650510311 scopus 로고    scopus 로고
    • Andalusian Administration Regulation, Available from
    • Andalusian Administration Regulation (2007). Andalusian official bulletin (BOJA), 119, 7-37. Available from http://www.juntadeandalucia.es/boja/ boletines/2007/119/d/2.html.
    • (2007) Andalusian Official Bulletin (BOJA) , vol.119 , pp. 7-37
  • 3
    • 0030292025 scopus 로고    scopus 로고
    • Incorporating mixed pixel in the training, allocation and testing stages of supervised classification
    • Foody, G. M., & Arora, M. K. (1996). Incorporating mixed pixel in the training, allocation and testing stages of supervised classification. Pattern Recognition Letters, 17, 1389-1398.
    • (1996) Pattern Recognition Letters , vol.17 , pp. 1389-1398
    • Foody, G.M.1    Arora, M.K.2
  • 5
    • 0001837148 scopus 로고
    • A comparison of alternative tests of significance for the problem of m rankings
    • Friedman, M. (1940). A comparison of alternative tests of significance for the problem of m rankings. Annals of Mathematical Statistics, 11, 86-92.
    • (1940) Annals of Mathematical Statistics , vol.11 , pp. 86-92
    • Friedman, M.1
  • 6
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: A statistical view of boosting. The Annals of Statistics, 38, 337-374.
    • (2000) The Annals of Statistics , vol.38 , pp. 337-374
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 9
    • 0037696635 scopus 로고    scopus 로고
    • Classification of hyperspectral data by decision trees and artificial neural networks to identify weed stress and nitrogen status of corn
    • Goel, P. K., Prasher, S. O., Patel, R. M., Landry, J. A., Bonnel, R. B., & Viau, A. A. (2003). Classification of hyperspectral data by decision trees and artificial neural networks to identify weed stress and nitrogen status of corn. Computers and Electronics in Agriculture, 39, 67-93.
    • (2003) Computers and Electronics in Agriculture , vol.39 , pp. 67-93
    • Goel, P.K.1    Prasher, S.O.2    Patel, R.M.3    Landry, J.A.4    Bonnel, R.B.5    Viau, A.A.6
  • 11
    • 56349140112 scopus 로고    scopus 로고
    • Expert system for pests, diseases and weeds identification in olive crops
    • González-Andujar, J. L. (2009). Expert system for pests, diseases and weeds identification in olive crops. Expert Systems with Applications, 36, 3278-3283.
    • (2009) Expert Systems with Applications , vol.36 , pp. 3278-3283
    • González-Andujar, J.L.1
  • 16
    • 0035888390 scopus 로고    scopus 로고
    • Vegetation mapping of a tropical freshwater swamp in the Northern Territory, Australia: A comparison of aerial photography, Landsat TM and SPOT satellite imagery
    • Harvey, K. R., & Hill, G. J. E. (2001). Vegetation mapping of a tropical freshwater swamp in the Northern Territory, Australia: A comparison of aerial photography, Landsat TM and SPOT satellite imagery . International Journal of Remote Sensing, 22, 2911-2925.
    • (2001) International Journal of Remote Sensing , vol.22 , pp. 2911-2925
    • Harvey, K.R.1    Hill, G.J.E.2
  • 17
    • 33749267856 scopus 로고    scopus 로고
    • Logistic regression using covariates obtained by product-unit neural network models
    • Hervás-Martínez, C., & Martínez-Estudillo, F. J. (2007). Logistic regression using covariates obtained by product-unit neural network models. Pattern Recognition, 40, 52-64.
    • (2007) Pattern Recognition , vol.40 , pp. 52-64
    • Hervás-Martínez, C.1    Martínez-Estudillo, F.J.2
  • 18
  • 19
    • 0029518215 scopus 로고
    • Land degradation, soil erosion, and desertification monitoring in Mediterranean ecosystems
    • Hill, J., Megier, J., & Mehl, W. (1995). Land degradation, soil erosion, and desertification monitoring in Mediterranean ecosystems. International Journal of Remote Sensing, 12, 107-130.
    • (1995) International Journal of Remote Sensing , vol.12 , pp. 107-130
    • Hill, J.1    Megier, J.2    Mehl, W.3
  • 21
    • 23844441268 scopus 로고    scopus 로고
    • Estimating and accommodating uncertainty through the soft classification of remote sensing data
    • Ibrahim, M. A., Arora, M. K., & Ghosh, S. K. (2005). Estimating and accommodating uncertainty through the soft classification of remote sensing data. International Journal of Remote Sensing, 26, 2995-3007.
    • (2005) International Journal of Remote Sensing , vol.26 , pp. 2995-3007
    • Ibrahim, M.A.1    Arora, M.K.2    Ghosh, S.K.3
  • 23
    • 58349113818 scopus 로고    scopus 로고
    • Two-stage logistic regression model
    • Kin, M. (2009). Two-stage logistic regression model. Expert Systems with Applications, 36, 6727-6734.
    • (2009) Expert Systems with Applications , vol.36 , pp. 6727-6734
    • Kin, M.1
  • 24
    • 14844293364 scopus 로고    scopus 로고
    • Detection of pitted morningglory (Ipomoea lacunosa) with hyperspectral remote sensing. II. Effects of vegetation ground cover and reflectance properties
    • Koger, C. H., Shaw, D. R., Reddy, K. N., & Bruce, L. M. (2004). Detection of pitted morningglory (Ipomoea lacunosa) with hyperspectral remote sensing. II. Effects of vegetation ground cover and reflectance properties. Weed Science, 52, 230-235.
    • (2004) Weed Science , vol.52 , pp. 230-235
    • Koger, C.H.1    Shaw, D.R.2    Reddy, K.N.3    Bruce, L.M.4
  • 29
    • 58349093296 scopus 로고    scopus 로고
    • Noisy time series prediction using M-estimator based robust radial basis function neural networks with growing and pruning techniques
    • Lee, C.-C., Chiang, Y.-C., Shih, C.-Y., & Tsai, C.-L. (2009). Noisy time series prediction using M-estimator based robust radial basis function neural networks with growing and pruning techniques. Expert Systems with Applications, 36, 4717-4724.
    • (2009) Expert Systems with Applications , vol.36 , pp. 4717-4724
    • Lee, C.-C.1    Chiang, Y.-C.2    Shih, C.-Y.3    Tsai, C.-L.4
  • 30
    • 0025839504 scopus 로고
    • A Gaussian potential function network with hierarchically selforganizing learning
    • Lee, S., & Kil, R. M. (1991). A Gaussian potential function network with hierarchically selforganizing learning. Neural Networks, 4, 207-224.
    • (1991) Neural Networks , vol.4 , pp. 207-224
    • Lee, S.1    Kil, R.M.2
  • 32
    • 38149077100 scopus 로고    scopus 로고
    • Multispectral classification of grass weeds and wheat (Triticum durum) crop using linear and nonparametric functional discriminant analysis and neural networks
    • López-Granados, F., Peña-Barragán, J. M., Jurado-Expósito, M., Francisco-Fernández, M., Cao, R., Alonso-Betanzos, A., et al. (2008). Multispectral classification of grass weeds and wheat (Triticum durum) crop using linear and nonparametric functional discriminant analysis and neural networks. Weed Research, 48, 28-37.
    • (2008) Weed Research , vol.48 , pp. 28-37
    • López-Granados, F.1    Peña-Barragán, J.M.2    Jurado-Expósito, M.3    Francisco-Fernández, M.4    Cao, R.5    Alonso-Betanzos, A.6
  • 33
    • 85030575004 scopus 로고    scopus 로고
    • MAPYA, Spanish Ministry of Agriculture, Available from
    • MAPYA (2007). Spanish Ministry of Agriculture, Fishery and Food. Available from http://www.mapa.es/es/estadistica/pags/anuario/introduccion.htm.
    • (2007) Fishery and Food
  • 36
    • 0000672424 scopus 로고
    • Fast learning in network of locally-tuned processing units
    • Moody, J., & Darken, C. J. (1989). Fast learning in network of locally-tuned processing units. Neural Computation, 1, 281-294.
    • (1989) Neural Computation , vol.1 , pp. 281-294
    • Moody, J.1    Darken, C.J.2
  • 37
    • 0036233190 scopus 로고    scopus 로고
    • Adoption of agroforestry in the hills of Nepal: A logistic regression analysis
    • Neupane, R. P., Sharma, K. R., & Thapa, G. B. (2002). Adoption of agroforestry in the hills of Nepal: A logistic regression analysis. Agricultural Systems, 72, 177-196.
    • (2002) Agricultural Systems , vol.72 , pp. 177-196
    • Neupane, R.P.1    Sharma, K.R.2    Thapa, G.B.3
  • 38
    • 0000106040 scopus 로고
    • Universal approximation using radial basis functions network
    • Park, J., & Sandberg, I. W. (1991). Universal approximation using radial basis functions network. Neural Computation, 3, 246-257.
    • (1991) Neural Computation , vol.3 , pp. 246-257
    • Park, J.1    Sandberg, I.W.2
  • 40
    • 4143109067 scopus 로고    scopus 로고
    • Determination of burnt scars using logistic regresión and neural network techniques from a single post-fire Landsat-7 ETM + image
    • Pu, R., & Gong, P. (2004). Determination of burnt scars using logistic regresión and neural network techniques from a single post-fire Landsat-7 ETM + image. Photogrammetric Engineering and Remote Sensing, 70, 841-850.
    • (2004) Photogrammetric Engineering and Remote Sensing , vol.70 , pp. 841-850
    • Pu, R.1    Gong, P.2
  • 41
    • 77957847586 scopus 로고
    • C4.5: Programs for machine learning. San Mateo, CA: Morgan Kaufmann
    • Quinlan, J. R. (1993). C4.5: Programs for machine learning. San Mateo, CA: Morgan Kaufmann.
    • (1993)
    • Quinlan, J.R.1
  • 42
    • 2042518688 scopus 로고    scopus 로고
    • Spectral measurements field guide
    • In Report No. ADA362372, Fort Bervoi, USA
    • Salisbury, J.W. (1999). Spectral measurements field guide. In Report No. ADA362372, 90 (pp. 2-9). Defense Tecnol. Info. Ctr., Fort Bervoi, USA.
    • (1999) Defense Tecnol. Info. Ctr. , vol.90 , pp. 2-9
    • Salisbury, J.W.1
  • 44
    • 0037466369 scopus 로고    scopus 로고
    • Spectral discrimination of vegetation types in coastal wetland
    • Schmidt, K. S., & Skidmore, A. K. (2003). Spectral discrimination of vegetation types in coastal wetland. Remote Sensing of Environment, 85, 92-108.
    • (2003) Remote Sensing of Environment , vol.85 , pp. 92-108
    • Schmidt, K.S.1    Skidmore, A.K.2
  • 45
    • 2342644217 scopus 로고    scopus 로고
    • Optimal classification methods for mapping agricultural tillage practises
    • South, S., Qi, J., & Lusch, D. P. (2004). Optimal classification methods for mapping agricultural tillage practises. Remote Sensing of Environment, 91, 90-97.
    • (2004) Remote Sensing of Environment , vol.91 , pp. 90-97
    • South, S.1    Qi, J.2    Lusch, D.P.3
  • 46
    • 2942724627 scopus 로고    scopus 로고
    • Accuracy assessments of hyperspectral wavebands performance of vegetation analysis applications
    • Thenkabail, P. S., Enclona, E. A., Ashton, M. S., & Van Der Meer, B. (2004). Accuracy assessments of hyperspectral wavebands performance of vegetation analysis applications. Remote Sensing of Environment, 91, 354-376.
    • (2004) Remote Sensing of Environment , vol.91 , pp. 354-376
    • Thenkabail, P.S.1    Enclona, E.A.2    Ashton, M.S.3    Van Der Meer, B.4
  • 47
    • 0033970477 scopus 로고    scopus 로고
    • Hyperspectral vegetation indices for determining agricultural crop characteristics
    • Thenkabail, P. S., Smith, R. B., & De-Pauw, E. (2000). Hyperspectral vegetation indices for determining agricultural crop characteristics. Remote Sensing of Environment, 71, 158-182.
    • (2000) Remote Sensing of Environment , vol.71 , pp. 158-182
    • Thenkabail, P.S.1    Smith, R.B.2    De-Pauw, E.3
  • 48
    • 69249217895 scopus 로고    scopus 로고
    • Multinomial logistic regression and product unit neural network models: Application of a new hybrid methodology for solving a classification problem in the livestock sector
    • Torres, M., Hervás, C., & García, C. (2009). Multinomial logistic regression and product unit neural network models: Application of a new hybrid methodology for solving a classification problem in the livestock sector. Expert Systems with Applications, 36, 12225-12235.
    • (2009) Expert Systems with Applications , vol.36 , pp. 12225-12235
    • Torres, M.1    Hervás, C.2    García, C.3
  • 51
    • 33747890538 scopus 로고    scopus 로고
    • Data mining: Practical machine learning tools and techniques
    • (Ed.), Data management systems (2nd ed., ser.). Elsevier
    • Witten, I.H., & Frank, E. (2005). Data mining: Practical machine learning tools and techniques. In Morgan Kaufmann (Ed.), Data management systems (2nd ed., ser.). Elsevier.
    • (2005) Morgan Kaufmann
    • Witten, I.H.1    Frank, E.2
  • 53
    • 0031143030 scopus 로고    scopus 로고
    • A new evolutionary system for evolving artificial neural networks
    • Yao, X., & Liu, Y. (1997). A new evolutionary system for evolving artificial neural networks. IEEE Transactions on Neural Networks, 8, 694-713.
    • (1997) IEEE Transactions on Neural Networks , vol.8 , pp. 694-713
    • Yao, X.1    Liu, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.