-
1
-
-
77954694205
-
-
10.1103/PhysRevB.80.205104
-
M. J. Rayson and P. R. Briddon, Phys. Rev. B 80, 205104 (2009). 10.1103/PhysRevB.80.205104
-
(2009)
Phys. Rev. B
, vol.80
, pp. 205104
-
-
Rayson, M.J.1
Briddon, P.R.2
-
3
-
-
63249090619
-
-
10.1103/PhysRevB.79.115110
-
C. J. García-Cervera, J. Lu, Y. Xuan, and E. Weinan, Phys. Rev. B 79, 115110 (2009). 10.1103/PhysRevB.79.115110
-
(2009)
Phys. Rev. B
, vol.79
, pp. 115110
-
-
García-Cervera, C.J.1
Lu, J.2
Xuan, Y.3
Weinan, E.4
-
5
-
-
70449338119
-
-
10.1063/1.3249966
-
M. Marchi, S. Azadi, M. Casula, and S. Sorella, J. Chem. Phys. 131, 154116 (2009). 10.1063/1.3249966
-
(2009)
J. Chem. Phys.
, vol.131
, pp. 154116
-
-
Marchi, M.1
Azadi, S.2
Casula, M.3
Sorella, S.4
-
10
-
-
4243617877
-
-
10.1021/jp972919j
-
P. E. Maslen, C. Ochsenfeld, C. A. White, M. S. Lee, and M. Head-Gordon, J. Phys. Chem. A 102, 2215 (1998). 10.1021/jp972919j
-
(1998)
J. Phys. Chem. A
, vol.102
, pp. 2215
-
-
Maslen, P.E.1
Ochsenfeld, C.2
White, C.A.3
Lee, M.S.4
Head-Gordon, M.5
-
11
-
-
0037137668
-
-
10.1021/jp0265541
-
G. Weck, A. Milet, R. Moszynski, and E. Kochanski, J. Phys. Chem. A 106, 12084 (2002). 10.1021/jp0265541
-
(2002)
J. Phys. Chem. A
, vol.106
, pp. 12084
-
-
Weck, G.1
Milet, A.2
Moszynski, R.3
Kochanski, E.4
-
12
-
-
70350397279
-
-
10.1021/jp9024365
-
A. C. Simmonett, N. J. Stibrich, B. N. Papas, H. F. Schaefer, and W. D. Allen, J. Phys. Chem. A 113, 11643 (2009). 10.1021/jp9024365
-
(2009)
J. Phys. Chem. A
, vol.113
, pp. 11643
-
-
Simmonett, A.C.1
Stibrich, N.J.2
Papas, B.N.3
Schaefer, H.F.4
Allen, W.D.5
-
13
-
-
26144450583
-
-
10.1103/PhysRevB.23.5048
-
J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981). 10.1103/PhysRevB.23.5048
-
(1981)
Phys. Rev. B
, vol.23
, pp. 5048
-
-
Perdew, J.P.1
Zunger, A.2
-
15
-
-
70450206724
-
-
Revision A.1, Gaussian, Inc., Wallingford, CT
-
M. J. Frisch, Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford, CT, 2009.
-
(2009)
Gaussian 09
-
-
Frisch, M.J.1
-
17
-
-
77957739884
-
-
The relative machine precision ε is the minimum number such that 1+ε≠1 in finite precision arithmetic
-
The relative machine precision ε is the minimum number such that 1 + ε ≠ 1 in finite precision arithmetic.
-
-
-
-
19
-
-
77957739756
-
-
In fact we have taken the GAUSSIAN09 molecular orbitals for the n=20 case, and used them to evaluate the DFT functional value with our algorithm, finding perfect agreement with the GAUSSIAN09 DFT energy
-
In fact we have taken the GAUSSIAN09 molecular orbitals for the n = 20 case, and used them to evaluate the DFT functional value with our algorithm, finding perfect agreement with the GAUSSIAN09 DFT energy.
-
-
-
-
21
-
-
33947227272
-
-
10.1103/PhysRevLett.98.110201
-
C. J. Umrigar, J. Toulouse, C. Filippi, S. Sorella, and R. G. Hennig, Phys. Rev. Lett. 98, 110201 (2007). 10.1103/PhysRevLett.98.110201
-
(2007)
Phys. Rev. Lett.
, vol.98
, pp. 110201
-
-
Umrigar, C.J.1
Toulouse, J.2
Filippi, C.3
Sorella, S.4
Hennig, R.G.5
|