-
1
-
-
0042113153
-
-
10.1103/PhysRev.140.A1133
-
W. Kohn and L. Sham, Phys. Rev. 140, A1133 (1965). 10.1103/PhysRev.140. A1133
-
(1965)
Phys. Rev.
, vol.140
, pp. 1133
-
-
Kohn, W.1
Sham, L.2
-
3
-
-
10644250257
-
-
10.1103/PhysRev.136.B864
-
P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964). 10.1103/PhysRev.136.B864
-
(1964)
Phys. Rev.
, vol.136
, pp. 864
-
-
Hohenberg, P.1
Kohn, W.2
-
4
-
-
0033235339
-
-
10.1103/RevModPhys.71.1253
-
W. Kohn, Rev. Mod. Phys. 71, 1253 (1999). 10.1103/RevModPhys.71.1253
-
(1999)
Rev. Mod. Phys.
, vol.71
, pp. 1253
-
-
Kohn, W.1
-
5
-
-
0033246389
-
-
10.1103/RevModPhys.71.1085
-
S. Goedecker, Rev. Mod. Phys. 71, 1085 (1999). 10.1103/RevModPhys.71.1085
-
(1999)
Rev. Mod. Phys.
, vol.71
, pp. 1085
-
-
Goedecker, S.1
-
6
-
-
4043140349
-
-
10.1103/PhysRevLett.76.3168
-
W. Kohn, Phys. Rev. Lett. 76, 3168 (1996). 10.1103/PhysRevLett.76.3168
-
(1996)
Phys. Rev. Lett.
, vol.76
, pp. 3168
-
-
Kohn, W.1
-
7
-
-
0002378786
-
-
10.1016/0166-1280(92)85024-F
-
W. Yang, J. Mol. Struct.: THEOCHEM 255, 461 (1992). 10.1016/0166-1280(92) 85024-F
-
(1992)
J. Mol. Struct.: THEOCHEM
, vol.255
, pp. 461
-
-
Yang, W.1
-
8
-
-
33846877429
-
-
10.1016/j.jcp.2006.06.049
-
M. Barrault, E. Cancès, W. W. Hager, and C. L. Bris, J. Comput. Phys. 222, 86 (2007). 10.1016/j.jcp.2006.06.049
-
(2007)
J. Comput. Phys.
, vol.222
, pp. 86
-
-
Barrault, M.1
Cancès, E.2
Hager, W.W.3
Bris, C.L.4
-
10
-
-
33748565991
-
-
10.1002/pssb.200541457
-
P. D. Haynes, C.-K. Skylaris, A. A. Mostofi, and M. C. Payne, Phys. Status Solidi B 243, 2489 (2006). 10.1002/pssb.200541457
-
(2006)
Phys. Status Solidi B
, vol.243
, pp. 2489
-
-
Haynes, P.D.1
Skylaris, C.-K.2
Mostofi, A.A.3
Payne, M.C.4
-
11
-
-
0011407476
-
-
10.1103/RevModPhys.32.335
-
R. McWeeny, Rev. Mod. Phys. 32, 335 (1960). 10.1103/RevModPhys.32.335
-
(1960)
Rev. Mod. Phys.
, vol.32
, pp. 335
-
-
McWeeny, R.1
-
16
-
-
0000606451
-
-
10.1103/PhysRevB.56.9294
-
W. Yang, Phys. Rev. B 56, 9294 (1997). 10.1103/PhysRevB.56.9294
-
(1997)
Phys. Rev. B
, vol.56
, pp. 9294
-
-
Yang, W.1
-
20
-
-
33750366486
-
-
10.1016/j.jcp.2006.03.017
-
Y. Zhou, Y. Saad, M. Tiago, and J. Chelikowsky, J. Comput. Phys. 219, 172 (2006). 10.1016/j.jcp.2006.03.017
-
(2006)
J. Comput. Phys.
, vol.219
, pp. 172
-
-
Zhou, Y.1
Saad, Y.2
Tiago, M.3
Chelikowsky, J.4
-
22
-
-
33744596259
-
-
10.1103/PhysRevB.28.1809
-
D. C. Langreth and M. J. Mehl, Phys. Rev. B 28, 1809 (1983). 10.1103/PhysRevB.28.1809
-
(1983)
Phys. Rev. B
, vol.28
, pp. 1809
-
-
Langreth, D.C.1
Mehl, M.J.2
-
25
-
-
36149021109
-
-
10.1103/PhysRev.115.809
-
W. Kohn, Phys. Rev. 115, 809 (1959). 10.1103/PhysRev.115.809
-
(1959)
Phys. Rev.
, vol.115
, pp. 809
-
-
Kohn, W.1
-
26
-
-
63249119120
-
-
Ph.D. thesis, Princeton University
-
J. Lu, Ph.D. thesis, Princeton University, 2009.
-
(2009)
-
-
Lu, J.1
-
28
-
-
0002737127
-
-
10.1016/0927-0256(94)00013-3
-
J. F. Annet, Comput. Mater. Sci. 4, 23 (1995). 10.1016/0927-0256(94) 00013-3
-
(1995)
Comput. Mater. Sci.
, vol.4
, pp. 23
-
-
Annet, J.F.1
-
29
-
-
0003668665
-
-
Classics in Applied Mathematics Vol. 20 (Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA
-
B. Parlett, The Symmetric Eigenvalue Problem, Classics in Applied Mathematics Vol. 20 (Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1998).
-
(1998)
The Symmetric Eigenvalue Problem
-
-
Parlett, B.1
-
31
-
-
0004236492
-
-
3rd ed., Johns Hopkins Studies in the Mathematical Sciences (Johns Hopkins University Press, Baltimore, MD
-
G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins Studies in the Mathematical Sciences (Johns Hopkins University Press, Baltimore, MD, 1996).
-
(1996)
Matrix Computations
-
-
Golub, G.H.1
Van Loan, C.F.2
-
32
-
-
34047187062
-
-
10.1063/1.2709881
-
B. Jansík, S. Høst, P. Jørgensen, J. Olsen, and T. Helgaker, J. Chem. Phys. 126, 124104 (2007). 10.1063/1.2709881
-
(2007)
J. Chem. Phys.
, vol.126
, pp. 124104
-
-
Jansík, B.1
Høst, S.2
Jørgensen, P.3
Olsen, J.4
Helgaker, T.5
-
35
-
-
63249119412
-
-
Strictly speaking, the system still has a tiny gap, but the exponent of exponential decay is so small that the algebraic behavior is dominant.
-
Strictly speaking, the system still has a tiny gap, but the exponent of exponential decay is so small that the algebraic behavior is dominant.
-
-
-
-
39
-
-
63249102217
-
-
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant (unpublished).
-
-
-
Frisch, M.J.1
Trucks, G.W.2
Schlegel, H.B.3
Scuseria, G.E.4
Robb, M.A.5
Cheeseman, J.R.6
Montgomery Jr., J.A.7
Vreven, T.8
Kudin, K.N.9
Burant, J.C.10
-
40
-
-
63249096460
-
-
http://www.fisica.uniud.it/giannozz/
-
-
-
-
42
-
-
26144450583
-
-
10.1103/PhysRevB.23.5048
-
J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981). 10.1103/PhysRevB.23.5048
-
(1981)
Phys. Rev. B
, vol.23
, pp. 5048
-
-
Perdew, J.P.1
Zunger, A.2
|