-
1
-
-
26144433204
-
-
10.1103/PhysRevLett.42.673
-
E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979). 10.1103/PhysRevLett.42.673
-
(1979)
Phys. Rev. Lett.
, vol.42
, pp. 673
-
-
Abrahams, E.1
Anderson, P.W.2
Licciardello, D.C.3
Ramakrishnan, T.V.4
-
3
-
-
0022200466
-
-
Proceedings of the 17th International Conference on the Physics of Semiconductors, edited by J. D. Chadi and W. A. Harrison (Springer, New York
-
Y. Masumoto, S. Shionoya, and H. Okamoto, Proceedings of the 17th International Conference on the Physics of Semiconductors, edited by, J. D. Chadi, and, W. A. Harrison, (Springer, New York, 1985), p. 349.
-
(1985)
, pp. 349
-
-
Masumoto, Y.1
Shionoya, S.2
Okamoto, H.3
-
4
-
-
0028201914
-
-
10.1016/0022-2313(94)90399-9
-
J. F. Donegan, R. P. Stanley, J. P. Doran, and J. Hegarty, J. Lumin. 58, 216 (1994). 10.1016/0022-2313(94)90399-9
-
(1994)
J. Lumin.
, vol.58
, pp. 216
-
-
Donegan, J.F.1
Stanley, R.P.2
Doran, J.P.3
Hegarty, J.4
-
6
-
-
0001454835
-
-
10.1103/PhysRevB.25.3828
-
E. Cohen and M. D. Sturge, Phys. Rev. B 25, 3828 (1982). 10.1103/PhysRevB.25.3828
-
(1982)
Phys. Rev. B
, vol.25
, pp. 3828
-
-
Cohen, E.1
Sturge, M.D.2
-
11
-
-
0000332240
-
-
10.1063/1.102812
-
J. Cibert, Y. Gobil, L. S. Dang, S. Tatarenko, G. Feuillet, P. H. Jouneau, and K. Saminadayar, Appl. Phys. Lett. 56, 292 (1990). 10.1063/1.102812
-
(1990)
Appl. Phys. Lett.
, vol.56
, pp. 292
-
-
Cibert, J.1
Gobil, Y.2
Dang, L.S.3
Tatarenko, S.4
Feuillet, G.5
Jouneau, P.H.6
Saminadayar, K.7
-
12
-
-
33750668607
-
-
10.1103/PhysRevB.39.1871
-
C. G. Van de Walle, Phys. Rev. B 39, 1871 (1989). 10.1103/PhysRevB.39. 1871
-
(1989)
Phys. Rev. B
, vol.39
, pp. 1871
-
-
Van De Walle, C.G.1
-
13
-
-
50249118989
-
-
10.1063/1.2966343
-
B. Pal, K. Goto, M. Ikezawa, Y. Masumoto, P. Mohan, J. Motohisa, and T. Fukui, Appl. Phys. Lett. 93, 073105 (2008). 10.1063/1.2966343
-
(2008)
Appl. Phys. Lett.
, vol.93
, pp. 073105
-
-
Pal, B.1
Goto, K.2
Ikezawa, M.3
Masumoto, Y.4
Mohan, P.5
Motohisa, J.6
Fukui, T.7
-
14
-
-
65249180285
-
-
10.1021/nl803942p
-
G. Ferrari, G. Goldoni, A. Bertoni, G. Cuoghi, and E. Molinari, Nano Lett. 9, 1631 (2009). 10.1021/nl803942p
-
(2009)
Nano Lett.
, vol.9
, pp. 1631
-
-
Ferrari, G.1
Goldoni, G.2
Bertoni, A.3
Cuoghi, G.4
Molinari, E.5
-
15
-
-
77957560567
-
-
We can simply understand that the energy is lower at the corners than that at the sides, by considering that InAs well can be 2/√3 times thicker at the corners than at the sides. Electronic states in a hexagonal tube with rounded edges were calculated by Ref.. The lowest energy state is the bonding sum of wave functions localized at the corners and six lowest-energy states are displayed. If wurtzite InP/InAs/InP CMNs have perfect hexagonal symmetry in the atomic level, linear combinations of wave functions shown in Fig. with sixfold rotation are the eigenfunctions for holes. Then hole bands are formed. The linear combinations of wave functions in CMNs are shown on a simplified model in Ref..
-
We can simply understand that the energy is lower at the corners than that at the sides, by considering that InAs well can be 2 / √ 3 times thicker at the corners than at the sides. Electronic states in a hexagonal tube with rounded edges were calculated by Ref.. The lowest energy state is the bonding sum of wave functions localized at the corners and six lowest-energy states are displayed. If wurtzite InP/InAs/InP CMNs have perfect hexagonal symmetry in the atomic level, linear combinations of wave functions shown in Fig. with sixfold rotation are the eigenfunctions for holes. Then hole bands are formed. The linear combinations of wave functions in CMNs are shown on a simplified model in Ref..
-
-
-
-
16
-
-
77952504757
-
-
10.1143/JJAP.48.04C203
-
K. Goto, M. Ikezawa, S. Tomimoto, B. Pal, Y. Masumoto, P. Mohan, J. Motohisa, and T. Fukui, Jpn. J. Appl. Phys., Part 1 48, 04C203 (2009). 10.1143/JJAP.48.04C203
-
(2009)
Jpn. J. Appl. Phys., Part 1
, vol.48
-
-
Goto, K.1
Ikezawa, M.2
Tomimoto, S.3
Pal, B.4
Masumoto, Y.5
Mohan, P.6
Motohisa, J.7
Fukui, T.8
-
17
-
-
77957586723
-
-
(unpublished).
-
Y. Masumoto, K. Goto, Y. Hirata, P. Mohan, J. Motohisa, and T. Fukui (unpublished).
-
-
-
Masumoto, Y.1
Goto, K.2
Hirata, Y.3
Mohan, P.4
Motohisa, J.5
Fukui, T.6
-
18
-
-
70349972982
-
-
10.1016/j.jlumin.2009.04.044
-
B. Pal, K. Goto, M. Ikezawa, Y. Masumoto, P. Mohan, J. Motohisa, and T. Fukui, J. Lumin. 129, 1941 (2009). 10.1016/j.jlumin.2009.04.044
-
(2009)
J. Lumin.
, vol.129
, pp. 1941
-
-
Pal, B.1
Goto, K.2
Ikezawa, M.3
Masumoto, Y.4
Mohan, P.5
Motohisa, J.6
Fukui, T.7
-
19
-
-
21544435418
-
-
10.1063/1.106531
-
M. Hopkinson, J. P. R. David, P. A. Claxton, and P. Kightley, Appl. Phys. Lett. 60, 841 (1992). 10.1063/1.106531
-
(1992)
Appl. Phys. Lett.
, vol.60
, pp. 841
-
-
Hopkinson, M.1
David, J.P.R.2
Claxton, P.A.3
Kightley, P.4
-
20
-
-
36248941316
-
-
The same decay time constant was obtained by time-resolved up-conversion measurement, too:, 10.1103/PhysRevB.76.205317
-
The same decay time constant was obtained by time-resolved up-conversion measurement, too: S. Tomimoto, A. Kurokawa, Y. Sakuma, T. Usuki, and Y. Masumoto, Phys. Rev. B 76, 205317 (2007). 10.1103/PhysRevB.76.205317
-
(2007)
Phys. Rev. B
, vol.76
, pp. 205317
-
-
Tomimoto, S.1
Kurokawa, A.2
Sakuma, Y.3
Usuki, T.4
Masumoto, Y.5
-
21
-
-
77957583690
-
-
We applied the up-conversion PL time-resolved spectroscopy (time resolution=120fs) to both the 1 ML PL band and the 2 ML PL band under the excitation at 1.41 eV and found no difference in the rise of PL. This fact suggests the exciton migration from 1 ML islands to 2 ML islands takes place earlier than 120 fs.
-
We applied the up-conversion PL time-resolved spectroscopy (time resolution = 120 fs) to both the 1 ML PL band and the 2 ML PL band under the excitation at 1.41 eV and found no difference in the rise of PL. This fact suggests the exciton migration from 1 ML islands to 2 ML islands takes place earlier than 120 fs.
-
-
-
-
22
-
-
77957589935
-
-
Y. Masumoto, K. Goto, B. Pal, P. Mohan, J. Motohisa, and T. Fukui, Physica E (to be published).
-
Physica e
-
-
Masumoto, Y.1
Goto, K.2
Pal, B.3
Mohan, P.4
Motohisa, J.5
Fukui, T.6
-
23
-
-
0024935165
-
-
10.1016/0022-2313(89)90066-5
-
T. Takagahara, J. Lumin. 44, 347 (1989). 10.1016/0022-2313(89)90066-5
-
(1989)
J. Lumin.
, vol.44
, pp. 347
-
-
Takagahara, T.1
-
24
-
-
0000151042
-
-
10.1103/PhysRevB.31.6552
-
T. Takagahara, Phys. Rev. B 31, 6552 (1985). 10.1103/PhysRevB.31.6552
-
(1985)
Phys. Rev. B
, vol.31
, pp. 6552
-
-
Takagahara, T.1
-
25
-
-
0001081157
-
-
10.1103/PhysRevB.45.4253
-
H. Kalt, J. Collet, S. D. Baranovskii, R. Saleh, P. Thomas, L. S. Dang, and J. Cibert, Phys. Rev. B 45, 4253 (1992). 10.1103/PhysRevB.45.4253
-
(1992)
Phys. Rev. B
, vol.45
, pp. 4253
-
-
Kalt, H.1
Collet, J.2
Baranovskii, S.D.3
Saleh, R.4
Thomas, P.5
Dang, L.S.6
Cibert, J.7
-
26
-
-
77957553736
-
-
Because the PL spectrum is well fitted by the Gaussian density of localized states, we use the Gaussian density of localized states and calculate Eq. numerically. To give the intuitive and instructive picture to the dimensionality-dependent energy loss, we can use the exponential tail for the localized states to calculate Eq. analytically. Tentatively assuming the density of the localized states as the exponential tail gd (E) = g0 exp (-E/ε ) for large E, we obtain g0 εexp (-ΔE/ε ) for the integral in Eq. . Then Eq. leads to ΔE=εln (2 g0 N1 ε ) + (ε/6 ) ln (At ) for one dimension and ΔE=εln (π g0 N2 ε ) + (ε/3 ) ln (At ) for two dimensions. Then dΔE/dln (At ) =εd/6. It analytically shows the slope of two-dimensional energy loss versus ln (t) is twice of the slope of one-dimensional energy loss versus ln (t), as is seen in Fig. .
-
Because the PL spectrum is well fitted by the Gaussian density of localized states, we use the Gaussian density of localized states and calculate Eq. numerically. To give the intuitive and instructive picture to the dimensionality-dependent energy loss, we can use the exponential tail for the localized states to calculate Eq. analytically. Tentatively assuming the density of the localized states as the exponential tail g d (E) = g 0 exp (- E / ε) for large E, we obtain g 0 ε exp (- Δ E / ε) for the integral in Eq.. Then Eq. leads to Δ E = ε ln (2 g 0 N 1 ε) + (ε / 6) ln (A t) for one dimension and Δ E = ε ln (π g 0 N 2 ε) + (ε / 3) ln (A t) for two dimensions. Then d Δ E / d ln (A t) = ε d / 6. It analytically shows the slope of two-dimensional energy loss versus ln (t) is twice of the slope of one-dimensional energy loss versus ln (t), as is seen in Fig..
-
-
-
|