-
2
-
-
23944515700
-
-
K. Matsuda, M. Shimomura, M. Ihara, M. Akamatsu, and D.B. Sattelle Biosci. Biotechnol. Biochem. 69 2005 1442
-
(2005)
Biosci. Biotechnol. Biochem.
, vol.69
, pp. 1442
-
-
Matsuda, K.1
Shimomura, M.2
Ihara, M.3
Akamatsu, M.4
Sattelle, D.B.5
-
5
-
-
34547430125
-
-
M. Tomizawa, T.T. Talley, D. Maltby, K.A. Durkin, K.F. Medzihradszky, A.L. Burlingame, P. Taylor, and J.E. Casida Proc. Natl. Acad. Sci. U.S.A. 104 2007 9075
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 9075
-
-
Tomizawa, M.1
Talley, T.T.2
Maltby, D.3
Durkin, K.A.4
Medzihradszky, K.F.5
Burlingame, A.L.6
Taylor, P.7
Casida, J.E.8
-
6
-
-
40349094594
-
-
M. Tomizawa, D. Maltby, T.T. Talley, K.A. Durkin, K.F. Medzihradszky, A.L. Burlingame, P. Taylor, and J.E. Casida Proc. Natl. Acad. Sci. U.S.A. 105 2008 1728
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 1728
-
-
Tomizawa, M.1
Maltby, D.2
Talley, T.T.3
Durkin, K.A.4
Medzihradszky, K.F.5
Burlingame, A.L.6
Taylor, P.7
Casida, J.E.8
-
7
-
-
44949241532
-
-
T.T. Talley, M. Harel, R.E. Hibbs, Z. Radić, M. Tomizawa, J.E. Casida, and P. Taylor Proc. Natl. Acad. Sci. U.S.A. 105 2008 7606
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 7606
-
-
Talley, T.T.1
Harel, M.2
Hibbs, R.E.3
Radić, Z.4
Tomizawa, M.5
Casida, J.E.6
Taylor, P.7
-
8
-
-
67549084531
-
-
M. Tomizawa, T.T. Talley, J.F. Park, D. Maltby, K.F. Medzihradszky, K.A. Durkin, J.M. Cornejo-Bravo, A.L. Burlingame, J.E. Casida, and P. Taylor J. Med. Chem. 52 2009 3735
-
(2009)
J. Med. Chem.
, vol.52
, pp. 3735
-
-
Tomizawa, M.1
Talley, T.T.2
Park, J.F.3
Maltby, D.4
Medzihradszky, K.F.5
Durkin, K.A.6
Cornejo-Bravo, J.M.7
Burlingame, A.L.8
Casida, J.E.9
Taylor, P.10
-
10
-
-
47749123304
-
-
M. Tomizawa, S. Kagabu, I. Ohno, K.A. Durkin, and J.E. Casida J. Med. Chem. 51 2008 4213
-
(2008)
J. Med. Chem.
, vol.51
, pp. 4213
-
-
Tomizawa, M.1
Kagabu, S.2
Ohno, I.3
Durkin, K.A.4
Casida, J.E.5
-
11
-
-
65949089363
-
-
I. Ohno, M. Tomizawa, K.A. Durkin, Y. Naruse, J.E. Casida, and S. Kagabu Chem. Res. Toxicol. 22 2009 476
-
(2009)
Chem. Res. Toxicol.
, vol.22
, pp. 476
-
-
Ohno, I.1
Tomizawa, M.2
Durkin, K.A.3
Naruse, Y.4
Casida, J.E.5
Kagabu, S.6
-
12
-
-
77951275580
-
-
I. Ohno, M. Tomizawa, A. Aoshima, S. Kumazawa, and S. Kagabu J. Agric. Food Chem. 58 2010 4999
-
(2010)
J. Agric. Food Chem.
, vol.58
, pp. 4999
-
-
Ohno, I.1
Tomizawa, M.2
Aoshima, A.3
Kumazawa, S.4
Kagabu, S.5
-
16
-
-
0031599814
-
-
I. Yamamoto, M. Tomizawa, T. Saito, T. Miyamoto, E.C. Walcott, and K. Sumikawa Arch. Insect Biochem. Physiol. 37 1998 24
-
(1998)
Arch. Insect Biochem. Physiol.
, vol.37
, pp. 24
-
-
Yamamoto, I.1
Tomizawa, M.2
Saito, T.3
Miyamoto, T.4
Walcott, E.C.5
Sumikawa, K.6
-
17
-
-
77957577101
-
-
note
-
We performed preliminary docking of compound 17 to an Aplysia californica AChBP crystal structure (protein data bank code 2WNJ, see Ref. 18) complexed with 3-(2,4-dimethyoxybenzylidene)-anabaseine which is similar in size to compound 17. We then carried out docking of this ligand to a homology model of the Myzus α2β1 receptor (see Refs. 6,10,11 ), after first allowing the active site of the homology model to optimise and adjust to ligands of similar size. It is well known that a water molecule forms a critical hydrogen-bonding bridge between the pyridinyl nitrogen of the neonicitinoid and the receptor (see Refs. 7,19 ), so we placed a water molecule in the active site prior to optimisation and docking. Geometry optimisations included all residues within 5 of the active site while residues beyond that were either partially constrained (5 beyond inner shell) or frozen (remainder of the structure). Up to 5000 steps per minimisation were run to achieve a gradient of 0.5 with respect to energy using the OPLS forcefield in Macromodel (see Refs. 20,21 ). Docking calculations were done using Glide as implemented in Maestro (Glide 5.5, Maestro 9.0, Schrödinger, LLC, New York, NY, 2010) (see Ref. 22). The docking includes a spatial fit of the ligand to the receptor grid, followed by minimisation and scoring of hits based on a discretized ChemScore function (see Refs. 23,24 ). Ligands were flexibly docked using standard precision and the top hits were examined.
-
-
-
-
18
-
-
70350571641
-
-
R.E. Hibbs, G. Sulzenbacher, J. Shi, T.T. Talley, S. Conrod, W.R. Kem, P. Taylor, P. Marchot, and Y. Bourne EBMO J. 28 2009 3040
-
(2009)
EBMO J.
, vol.28
, pp. 3040
-
-
Hibbs, R.E.1
Sulzenbacher, G.2
Shi, J.3
Talley, T.T.4
Conrod, S.5
Kem, W.R.6
Taylor, P.7
Marchot, P.8
Bourne, Y.9
-
19
-
-
64549083272
-
-
I. Ohno, M. Tomizawa, K.A. Durkin, J.E. Casida, and S. Kagabu J. Agric. Food Chem. 57 2009 2436
-
(2009)
J. Agric. Food Chem.
, vol.57
, pp. 2436
-
-
Ohno, I.1
Tomizawa, M.2
Durkin, K.A.3
Casida, J.E.4
Kagabu, S.5
-
21
-
-
84986437005
-
-
F. Mohamadi, N.G.J. Richard, W.C. Guida, R. Liskamp, M. Lipton, C. Caufield, G. Chang, T. Hendrickson, and W.C. Still J. Comput. Chem. 11 1990 440
-
(1990)
J. Comput. Chem.
, vol.11
, pp. 440
-
-
Mohamadi, F.1
Richard, N.G.J.2
Guida, W.C.3
Liskamp, R.4
Lipton, M.5
Caufield, C.6
Chang, G.7
Hendrickson, T.8
Still, W.C.9
-
22
-
-
12144289984
-
-
R.A. Friesner, J.L. Banks, R.B. Murphy, T.A. Halgren, J.J. Klicic, D.T. Mainz, M.P. Repasky, E.H. Knoll, M. Shelley, J.K. Perry, D.E. Shaw, P. Francis, and P.S. Shenkin J. Med. Chem. 47 2004 1739
-
(2004)
J. Med. Chem.
, vol.47
, pp. 1739
-
-
Friesner, R.A.1
Banks, J.L.2
Murphy, R.B.3
Halgren, T.A.4
Klicic, J.J.5
Mainz, D.T.6
Repasky, M.P.7
Knoll, E.H.8
Shelley, M.9
Perry, J.K.10
Shaw, D.E.11
Francis, P.12
Shenkin, P.S.13
-
23
-
-
0031226772
-
-
M.D. Eldridge, C.W. Murray, T.R. Auton, G.V. Paolini, and R.P. Mee J. Comput. Aided Mol. Des. 11 1997 425
-
(1997)
J. Comput. Aided Mol. Des.
, vol.11
, pp. 425
-
-
Eldridge, M.D.1
Murray, C.W.2
Auton, T.R.3
Paolini, G.V.4
Mee, R.P.5
-
24
-
-
0032533791
-
-
C.A. Baxter, C.W. Murray, D.E. Clark, D.R. Westhead, and M.D. Eldridge Proteins 33 1998 367
-
(1998)
Proteins
, vol.33
, pp. 367
-
-
Baxter, C.A.1
Murray, C.W.2
Clark, D.E.3
Westhead, D.R.4
Eldridge, M.D.5
|