-
3
-
-
33745869026
-
Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives
-
Heymans N, Podlubny I. Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives. Rheol Acta, 45: 765-771 (2006)
-
(2006)
Rheol Acta
, vol.45
, pp. 765-771
-
-
Heymans, N.1
Podlubny, I.2
-
4
-
-
0030464353
-
Fractional relaxation-oscillation and fractional diffusion-wave phenomena
-
9
-
Mainardi F. Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos Solitons Fractals, 7(9): 1461-1477 (1996)
-
(1996)
Chaos Solitons Fractals
, vol.7
, pp. 1461-1477
-
-
Mainardi, F.1
-
5
-
-
27244443858
-
Existence and uniqueness theorems for differential equations of fractional order in weighted spaces of continuous functions
-
4
-
Kilbas A A, Rivero M, Trujillo J J. Existence and uniqueness theorems for differential equations of fractional order in weighted spaces of continuous functions. Frac Calc Appl Anal, 6(4): 363-400 (2003)
-
(2003)
Frac Calc Appl Anal
, vol.6
, pp. 363-400
-
-
Kilbas, A.A.1
Rivero, M.2
Trujillo, J.J.3
-
6
-
-
25144504263
-
Modelling and simulation of artificial locomotion systems
-
Silva M F, Machado J A T, Lopes A M. Modelling and simulation of artificial locomotion systems. Robotica, 23: 595-606 (2005)
-
(2005)
Robotica
, vol.23
, pp. 595-606
-
-
Silva, M.F.1
MacHado, J.A.T.2
Lopes, A.M.3
-
7
-
-
34748901185
-
A Hamiltonian formulation and a direct numerical scheme for fractional optimal control problems
-
9-10
-
Agrawal O P, Baleanu D. A Hamiltonian formulation and a direct numerical scheme for fractional optimal control problems. J Vib Control, 13(9-10): 1269-1281 (2007)
-
(2007)
J Vib Control
, vol.13
, pp. 1269-1281
-
-
Agrawal, O.P.1
Baleanu, D.2
-
8
-
-
34047155651
-
Mixtures of compound Poisson processes as models of tick-by-tick financial data
-
1
-
Scalas E. Mixtures of compound Poisson processes as models of tick-by-tick financial data. Chaos Solitons Fractals, 34(1): 33-40 (2007)
-
(2007)
Chaos Solitons Fractals
, vol.34
, pp. 33-40
-
-
Scalas, E.1
-
9
-
-
33745725683
-
A speculative study of 2/3-order fractional Laplacian modelling of turbulence: Some thoughts and conjectures
-
2
-
Chen W. A speculative study of 2/3-order fractional Laplacian modelling of turbulence: some thoughts and conjectures. Chaos, 16(2): 1-11 (2006)
-
(2006)
Chaos
, vol.16
, pp. 1-11
-
-
Chen, W.1
-
10
-
-
0000735791
-
Nonconservative Lagrangian and Hamiltonian mechanics
-
Riewe F. Nonconservative Lagrangian and Hamiltonian mechanics. Phys Rev E, 53: 1890-1899 (1996)
-
(1996)
Phys Rev e
, vol.53
, pp. 1890-1899
-
-
Riewe, F.1
-
11
-
-
0035737230
-
Fractional sequential mechanics-models with symmetric fractional derivatives
-
Klimek M. Fractional sequential mechanics-models with symmetric fractional derivatives. Czech J Phys, 51: 1348-1354 (2001)
-
(2001)
Czech J Phys
, vol.51
, pp. 1348-1354
-
-
Klimek, M.1
-
12
-
-
0036701004
-
Formulation of Euler-Lagrange equations for fractional variational problems
-
Agrawal O P. Formulation of Euler-Lagrange equations for fractional variational problems. J Math Anal Appl, 272: 368-379 (2002)
-
(2002)
J Math Anal Appl
, vol.272
, pp. 368-379
-
-
Agrawal, O.P.1
-
13
-
-
33745870156
-
Fractional Hamiltoian analysis of irregular systems
-
10
-
Baleanu D. Fractional Hamiltoian analysis of irregular systems. Signal Processing, 86(10): 2632-2636 (2006)
-
(2006)
Signal Processing
, vol.86
, pp. 2632-2636
-
-
Baleanu, D.1
-
14
-
-
21644464298
-
Formulation of Hamiltonian equations for fractional variational problems
-
6
-
Baleanu D, Muslih S I. Formulation of Hamiltonian equations for fractional variational problems. Czech J Phys, 55(6): 633-642 (2005)
-
(2005)
Czech J Phys
, vol.55
, pp. 633-642
-
-
Baleanu, D.1
Muslih, S.I.2
-
15
-
-
23344444772
-
Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives
-
2-3
-
Baleanu D, Muslih S I. Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives. Physica Scripta, 72(2-3): 119-121 (2005)
-
(2005)
Physica Scripta
, vol.72
, pp. 119-121
-
-
Baleanu, D.1
Muslih, S.I.2
-
16
-
-
33750541076
-
Fractional Hamiltonian analysis of higher order derivatives systems
-
10
-
Baleanu D, Muslih S I, Tas K. Fractional Hamiltonian analysis of higher order derivatives systems. J Math Phys, 47(10): 103503 (2006)
-
(2006)
J Math Phys
, vol.47
, pp. 103503
-
-
Baleanu, D.1
Muslih, S.I.2
Tas, K.3
-
17
-
-
0003243049
-
Ordinary and delay differential equations
-
Springer-Verlag New York
-
Driver R D. Ordinary and delay differential equations. In: Applied Mathematical Sciences. New York: Springer-Verlag, 1977
-
(1977)
Applied Mathematical Sciences
-
-
Driver, R.D.1
-
18
-
-
33947133956
-
Stability analysis of linear fractional differential system with multiple time scales
-
Deng W, Li C, Lu J. Stability analysis of linear fractional differential system with multiple time scales. Nonlinear Dynam, 48: 409-416 (2007)
-
(2007)
Nonlinear Dynam
, vol.48
, pp. 409-416
-
-
Deng, W.1
Li, C.2
Lu, J.3
-
19
-
-
10644238068
-
Algorithms for the fractional calculus: A selection of numerical methods
-
6-8
-
Diethelm K, Ford N J, Freed A D, Luchko Y. Algorithms for the fractional calculus: A selection of numerical methods. Comput Methods Appl Mech Engrg, 194(6-8): 743-773 (2005)
-
(2005)
Comput Methods Appl Mech Engrg
, vol.194
, pp. 743-773
-
-
Diethelm, K.1
Ford, N.J.2
Freed, A.D.3
Luchko, Y.4
-
20
-
-
51349155937
-
-
Badajos, Spain, October 17-20
-
Podlubny I. Fractional derivatives: History, Theory, Application, Symposium on applied fractional calculus. Badajos, Spain, October 17-20, 2007
-
(2007)
Fractional Derivatives: History, Theory, Application, Symposium on Applied Fractional Calculus
-
-
Podlubny, I.1
|