메뉴 건너뛰기




Volumn 39, Issue 3, 2011, Pages 227-241

A review of representation issues and modeling challenges with influence diagrams

Author keywords

Decision making under uncertainty; Gaussian influence diagrams; Influence diagrams; Limited memory influence diagrams; Mixture of Gaussians influence diagrams; Mixture of polynomials influence diagrams; Mixture of truncated exponentials influence diagrams; Partial influence diagrams; Probabilistic graphical models; Sequential decision diagrams; Sequential influence diagrams; Sequential valuation networks; Unconstrained influence diagrams

Indexed keywords


EID: 77957126046     PISSN: 03050483     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.omega.2010.07.003     Document Type: Review
Times cited : (33)

References (90)
  • 2
    • 0342313804 scopus 로고    scopus 로고
    • Structural, elicitation and computational issues faced when solving complex decision problems with influence diagrams
    • Bielza C., Gómez M., Ríos-Insua S., Fernández del Pozo J. Structural, elicitation and computational issues faced when solving complex decision problems with influence diagrams. Computers and Operations Research 2000, 27(7-8):725-740.
    • (2000) Computers and Operations Research , vol.27 , Issue.7-8 , pp. 725-740
    • Bielza, C.1    Gómez, M.2    Ríos-Insua, S.3    Fernández del Pozo, J.4
  • 3
    • 0345534823 scopus 로고    scopus 로고
    • Decision analysis by augmented probability simulation
    • Bielza C., Müller P., Ríos D. Decision analysis by augmented probability simulation. Management Science 1999, 45(7):995-1007.
    • (1999) Management Science , vol.45 , Issue.7 , pp. 995-1007
    • Bielza, C.1    Müller, P.2    Ríos, D.3
  • 4
    • 0033361457 scopus 로고    scopus 로고
    • A comparison of graphical techniques for asymmetric decision problems
    • Bielza C., Shenoy P.P. A comparison of graphical techniques for asymmetric decision problems. Management Science 1999, 45(11):1552-1569.
    • (1999) Management Science , vol.45 , Issue.11 , pp. 1552-1569
    • Bielza, C.1    Shenoy, P.P.2
  • 6
    • 77955852135 scopus 로고    scopus 로고
    • The influence of influence diagrams on artificial intelligence
    • Boutilier C. The influence of influence diagrams on artificial intelligence. Decision Analysis 2005, 2(4):229-231.
    • (2005) Decision Analysis , vol.2 , Issue.4 , pp. 229-231
    • Boutilier, C.1
  • 7
    • 77955853937 scopus 로고    scopus 로고
    • Influence diagrams: a practitioner's perspective
    • Buede D. Influence diagrams: a practitioner's perspective. Decision Analysis 2005, 2(4):235-237.
    • (2005) Decision Analysis , vol.2 , Issue.4 , pp. 235-237
    • Buede, D.1
  • 8
    • 0025106669 scopus 로고
    • A comparison of approaches and implementations for automating decision analysis
    • Call H., Miller W. A comparison of approaches and implementations for automating decision analysis. Reliability Engineering and System Safety 1990, 30:115-162.
    • (1990) Reliability Engineering and System Safety , vol.30 , pp. 115-162
    • Call, H.1    Miller, W.2
  • 9
    • 33748279632 scopus 로고    scopus 로고
    • Combining decision tree and MAUT for selecting a country for a global manufacturing facility
    • Canbolat Y.B., Chelst K., Garg N. Combining decision tree and MAUT for selecting a country for a global manufacturing facility. Omega 2007, 35(3):312-325.
    • (2007) Omega , vol.35 , Issue.3 , pp. 312-325
    • Canbolat, Y.B.1    Chelst, K.2    Garg, N.3
  • 10
    • 1842732640 scopus 로고    scopus 로고
    • Multi-stage Monte Carlo method for solving influence diagrams using local computation
    • Charnes J.M., Shenoy P.P. Multi-stage Monte Carlo method for solving influence diagrams using local computation. Management Science 2004, 50(3):405-418.
    • (2004) Management Science , vol.50 , Issue.3 , pp. 405-418
    • Charnes, J.M.1    Shenoy, P.P.2
  • 13
    • 70350564931 scopus 로고    scopus 로고
    • Influence diagrams with continuous decision variables and non-Gaussian uncertainties
    • Cobb B.R. Influence diagrams with continuous decision variables and non-Gaussian uncertainties. Decision Analysis 2007, 4(3):136-155.
    • (2007) Decision Analysis , vol.4 , Issue.3 , pp. 136-155
    • Cobb, B.R.1
  • 14
  • 16
    • 35349010084 scopus 로고    scopus 로고
    • Decision making with hybrid influence diagrams using mixtures of truncated exponentials
    • Cobb B.R., Shenoy P.P. Decision making with hybrid influence diagrams using mixtures of truncated exponentials. European Journal of Operational Research 2008, 186(1):261-275.
    • (2008) European Journal of Operational Research , vol.186 , Issue.1 , pp. 261-275
    • Cobb, B.R.1    Shenoy, P.P.2
  • 17
    • 33745634852 scopus 로고    scopus 로고
    • Approximating probability density functions in hybrid Bayesian networks with mixtures of truncated exponentials
    • Cobb B.R., Shenoy P.P., Rumi R. Approximating probability density functions in hybrid Bayesian networks with mixtures of truncated exponentials. Statistics & Computing 2006, 16(3):293-308.
    • (2006) Statistics & Computing , vol.16 , Issue.3 , pp. 293-308
    • Cobb, B.R.1    Shenoy, P.P.2    Rumi, R.3
  • 19
    • 0001120291 scopus 로고
    • Representation and solution of decision problems using sequential decision diagrams
    • Covaliu Z., Oliver R. Representation and solution of decision problems using sequential decision diagrams. Management Science 1995, 41(12):1860-1881.
    • (1995) Management Science , vol.41 , Issue.12 , pp. 1860-1881
    • Covaliu, Z.1    Oliver, R.2
  • 20
    • 25144472302 scopus 로고    scopus 로고
    • Sequential valuation networks for asymmetric decision problems
    • Demirer R., Shenoy P.P. Sequential valuation networks for asymmetric decision problems. European Journal of Operational Research 2006, 169(1):286-309.
    • (2006) European Journal of Operational Research , vol.169 , Issue.1 , pp. 286-309
    • Demirer, R.1    Shenoy, P.P.2
  • 21
    • 70350057376 scopus 로고    scopus 로고
    • Influence diagrams for team decision analysis
    • Detwarasiti A., Shachter R.D. Influence diagrams for team decision analysis. Decision Analysis 2005, 2(4):207-228.
    • (2005) Decision Analysis , vol.2 , Issue.4 , pp. 207-228
    • Detwarasiti, A.1    Shachter, R.D.2
  • 25
    • 85170490177 scopus 로고
    • Contingent influence diagrams. Technical Report, Department of Engineering-Economic Systems, Stanford University, Stanford, California
    • Fung RM, Shachter RD. Contingent influence diagrams. Technical Report, Department of Engineering-Economic Systems, Stanford University, Stanford, California; 1990.
    • (1990)
    • Fung, R.M.1    Shachter, R.D.2
  • 28
    • 33750471180 scopus 로고    scopus 로고
    • The effects of structural characteristics of explanations on use of a DSS
    • Gönül M., Önkal D., Lawrence M. The effects of structural characteristics of explanations on use of a DSS. Decision Support Systems 2006, 42:1481-1493.
    • (2006) Decision Support Systems , vol.42 , pp. 1481-1493
    • Gönül, M.1    Önkal, D.2    Lawrence, M.3
  • 29
    • 0031182608 scopus 로고    scopus 로고
    • Influence diagrams: a new dimension for decision models
    • Helfand M., Pauker S. Influence diagrams: a new dimension for decision models. Medical Decision Making 1997, 17(3):351-352.
    • (1997) Medical Decision Making , vol.17 , Issue.3 , pp. 351-352
    • Helfand, M.1    Pauker, S.2
  • 30
    • 0343660121 scopus 로고    scopus 로고
    • Flexible policy construction by information refinement
    • Morgan Kaufmann, San Francisco, CA, E. Horvitz, F.V. Jensen (Eds.)
    • Horsch M., Poole D. Flexible policy construction by information refinement. Uncertainty in artificial intelligence: proceedings of the 12th conference 1996, 315-324. Morgan Kaufmann, San Francisco, CA. E. Horvitz, F.V. Jensen (Eds.).
    • (1996) Uncertainty in artificial intelligence: proceedings of the 12th conference , pp. 315-324
    • Horsch, M.1    Poole, D.2
  • 31
    • 33645957599 scopus 로고    scopus 로고
    • An anytime algorithm for decision making under uncertainty
    • Morgan Kaufmann, San Francisco, G. Cooper, S. Moral (Eds.)
    • Horsch M., Poole D. An anytime algorithm for decision making under uncertainty. Uncertainty in artificial intelligence: proceedings of the 14th conference 1998, 246-255. Morgan Kaufmann, San Francisco. G. Cooper, S. Moral (Eds.).
    • (1998) Uncertainty in artificial intelligence: proceedings of the 14th conference , pp. 246-255
    • Horsch, M.1    Poole, D.2
  • 32
    • 9444228071 scopus 로고    scopus 로고
    • Estimating the value of computation in flexible information refinement
    • Morgan Kaufmann, San Francisco, CA, K. Laskey, H. Prade (Eds.)
    • Horsch M., Poole D. Estimating the value of computation in flexible information refinement. Uncertainty in artificial intelligence: proceedings of the 15th conference 1999, 297-304. Morgan Kaufmann, San Francisco, CA. K. Laskey, H. Prade (Eds.).
    • (1999) Uncertainty in artificial intelligence: proceedings of the 15th conference , pp. 297-304
    • Horsch, M.1    Poole, D.2
  • 33
    • 0343224473 scopus 로고    scopus 로고
    • Time-critical action: representations and application
    • Morgan Kaufmann, San Francisco, CA, D. Geiger, P.P. Shenoy (Eds.)
    • Horvitz E., Seiver A. Time-critical action: representations and application. Uncertainty in artificial intelligence: proceedings of the 13th conference 1997, 250-257. Morgan Kaufmann, San Francisco, CA. D. Geiger, P.P. Shenoy (Eds.).
    • (1997) Uncertainty in artificial intelligence: proceedings of the 13th conference , pp. 250-257
    • Horvitz, E.1    Seiver, A.2
  • 34
    • 84909809278 scopus 로고
    • In: Howard R, Matheson J, editors. Readings on the principles and applications of decision analysis, vol. II. Strategic Decisions Group
    • Howard R, Matheson J. Influence diagrams. In: Howard R, Matheson J, editors. Readings on the principles and applications of decision analysis, vol. II. Strategic Decisions Group; 1984. p. 719-62.
    • (1984) Influence diagrams , pp. 719-762
    • Howard, R.1    Matheson, J.2
  • 35
    • 33749596111 scopus 로고    scopus 로고
    • Influence diagram retrospective
    • Howard R., Matheson J. Influence diagram retrospective. Decision Analysis 2005, 2:144-147.
    • (2005) Decision Analysis , vol.2 , pp. 144-147
    • Howard, R.1    Matheson, J.2
  • 42
    • 0012647666 scopus 로고
    • Influence diagram models with continuous variables
    • Stanford, CA
    • Kenley CR. Influence diagram models with continuous variables. PhD thesis, Stanford University, Stanford, CA; 1986.
    • (1986) PhD thesis, Stanford University
    • Kenley, C.R.1
  • 43
    • 0036776514 scopus 로고    scopus 로고
    • Hybrid of neural network and decision knowledge approach to generating influence diagrams
    • Kim J., Lee K., Lee J. Hybrid of neural network and decision knowledge approach to generating influence diagrams. Expert Systems with Applications 2002, 23(3):237-244.
    • (2002) Expert Systems with Applications , vol.23 , Issue.3 , pp. 237-244
    • Kim, J.1    Lee, K.2    Lee, J.3
  • 44
    • 0141503453 scopus 로고    scopus 로고
    • Multi-agent influence diagrams for representing and solving games
    • Koller D., Milch B. Multi-agent influence diagrams for representing and solving games. Games and Economic Behavior 2003, 45(1):181-221.
    • (2003) Games and Economic Behavior , vol.45 , Issue.1 , pp. 181-221
    • Koller, D.1    Milch, B.2
  • 45
    • 18744404815 scopus 로고    scopus 로고
    • A review of explanation methods for heuristic expert systems
    • Lacave C., Díez F. A review of explanation methods for heuristic expert systems. Knowledge Engineering Review 2004, 19:133-146.
    • (2004) Knowledge Engineering Review , vol.19 , pp. 133-146
    • Lacave, C.1    Díez, F.2
  • 46
    • 0041377763 scopus 로고    scopus 로고
    • Stable local computation with conditional Gaussian distributions
    • Lauritzen S.L., Jensen F.V. Stable local computation with conditional Gaussian distributions. Statistics and Computing 2001, 11:191-203.
    • (2001) Statistics and Computing , vol.11 , pp. 191-203
    • Lauritzen, S.L.1    Jensen, F.V.2
  • 47
    • 0035466786 scopus 로고    scopus 로고
    • Representing and solving decision problems with limited information
    • Lauritzen S.L., Nilsson D. Representing and solving decision problems with limited information. Management Science 2001, 47(9):1235-1251.
    • (2001) Management Science , vol.47 , Issue.9 , pp. 1235-1251
    • Lauritzen, S.L.1    Nilsson, D.2
  • 49
    • 1942418103 scopus 로고    scopus 로고
    • Exact inference in networks with discrete children of continuous parents
    • Morgan Kaufmann, San Francisco, CA, J. Breese, D. Koller (Eds.)
    • Lerner U., Segal E., Koller D. Exact inference in networks with discrete children of continuous parents. Uncertainty in artificial intelligence: proceedings of the 17th conference 2001, 319-328. Morgan Kaufmann, San Francisco, CA. J. Breese, D. Koller (Eds.).
    • (2001) Uncertainty in artificial intelligence: proceedings of the 17th conference , pp. 319-328
    • Lerner, U.1    Segal, E.2    Koller, D.3
  • 51
    • 1842558693 scopus 로고    scopus 로고
    • Representing asymmetric decision problems using coarse valuations
    • Liu L., Shenoy P.P. Representing asymmetric decision problems using coarse valuations. Decision Support Systems 2004, 37(1):119-135.
    • (2004) Decision Support Systems , vol.37 , Issue.1 , pp. 119-135
    • Liu, L.1    Shenoy, P.P.2
  • 54
    • 0002425879 scopus 로고    scopus 로고
    • A variational approximation for Bayesian networks with discrete and continuous latent variables
    • Morgan Kaufmann, San Francisco, CA, K. Laskey, H. Prade (Eds.)
    • Murphy K. A variational approximation for Bayesian networks with discrete and continuous latent variables. Uncertainty in artificial intelligence: proceedings of the 15th conference 1999, 457-466. Morgan Kaufmann, San Francisco, CA. K. Laskey, H. Prade (Eds.).
    • (1999) Uncertainty in artificial intelligence: proceedings of the 15th conference , pp. 457-466
    • Murphy, K.1
  • 55
    • 1842292106 scopus 로고    scopus 로고
    • Use of influence diagrams to structure medical decisions
    • Nease R., Owens D. Use of influence diagrams to structure medical decisions. Medical Decision Making 1997, 17:263-275.
    • (1997) Medical Decision Making , vol.17 , pp. 263-275
    • Nease, R.1    Owens, D.2
  • 58
    • 85170483648 scopus 로고
    • Decision analysis of intelligence resource allocation. Technical Report DAH C15-73-C-0430, Stanford Research Institute, Menlo Park, CA
    • North D, Miller A, Braunstein T. Decision analysis of intelligence resource allocation. Technical Report DAH C15-73-C-0430, Stanford Research Institute, Menlo Park, CA; 1974.
    • (1974)
    • North, D.1    Miller, A.2    Braunstein, T.3
  • 60
    • 0030952509 scopus 로고    scopus 로고
    • Representation and analysis of medical decision problems with influence diagrams
    • Owens D., Shachter R., Nease R. Representation and analysis of medical decision problems with influence diagrams. Medical Decision Making 1997, 17:241-262.
    • (1997) Medical Decision Making , vol.17 , pp. 241-262
    • Owens, D.1    Shachter, R.2    Nease, R.3
  • 61
    • 67349207561 scopus 로고    scopus 로고
    • The influence of influence diagrams in medicine
    • Pauker S., Wong J. The influence of influence diagrams in medicine. Decision Analysis 2005, 2(4):238-244.
    • (2005) Decision Analysis , vol.2 , Issue.4 , pp. 238-244
    • Pauker, S.1    Wong, J.2
  • 62
    • 34548038217 scopus 로고    scopus 로고
    • Influence diagrams-historical and personal perspectives
    • Pearl J. Influence diagrams-historical and personal perspectives. Decision Analysis 2005, 2:232-234.
    • (2005) Decision Analysis , vol.2 , pp. 232-234
    • Pearl, J.1
  • 63
    • 0008618386 scopus 로고
    • Reasoning about the value of decision-model refinement: methods and application
    • Morgan Kaufmann, San Francisco, CA, D. Heckerman, A. Mamdani (Eds.)
    • Poh K., Horvitz E. Reasoning about the value of decision-model refinement: methods and application. Uncertainty in artificial intelligence: proceedings of the 11th conference 1993, 174-182. Morgan Kaufmann, San Francisco, CA. D. Heckerman, A. Mamdani (Eds.).
    • (1993) Uncertainty in artificial intelligence: proceedings of the 11th conference , pp. 174-182
    • Poh, K.1    Horvitz, E.2
  • 64
    • 0345181027 scopus 로고
    • Decision analysis with continuous and discrete variables: a mixture distribution approach
    • Stanford, CA
    • Poland III WB. Decision analysis with continuous and discrete variables: a mixture distribution approach. PhD thesis, Stanford University, Stanford, CA; 1994.
    • (1994) PhD thesis, Stanford University
    • Poland III, W.B.1
  • 65
    • 21244504129 scopus 로고
    • Mixtures of Gaussians and minimum relative entropy techniques for modeling continuous uncertainties
    • Morgan Kaufmann, San Francisco, CA, D. Heckerman, A. Mamdani (Eds.)
    • Poland W.B., Shachter R.D. Mixtures of Gaussians and minimum relative entropy techniques for modeling continuous uncertainties. Uncertainty in artificial intelligence: proceedings of the ninth conference 1993, 183-190. Morgan Kaufmann, San Francisco, CA. D. Heckerman, A. Mamdani (Eds.).
    • (1993) Uncertainty in artificial intelligence: proceedings of the ninth conference , pp. 183-190
    • Poland, W.B.1    Shachter, R.D.2
  • 66
    • 0031187203 scopus 로고    scopus 로고
    • The independent choice logic for modelling multiple agents under uncertainty
    • Poole D. The independent choice logic for modelling multiple agents under uncertainty. Artificial Intelligence 1997, 94:7-56.
    • (1997) Artificial Intelligence , vol.94 , pp. 7-56
    • Poole, D.1
  • 67
    • 0027558641 scopus 로고
    • Dynamic network construction and updating techniques for the diagnosis of acute abdominal pain
    • Provan G., Clarke J. Dynamic network construction and updating techniques for the diagnosis of acute abdominal pain. IEEE Transactions on Pattern Analysis and Machine Intelligence 1993, 15(3):299-307.
    • (1993) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.15 , Issue.3 , pp. 299-307
    • Provan, G.1    Clarke, J.2
  • 68
    • 0342642490 scopus 로고
    • Solving asymmetric decision problems with influence diagrams
    • Morgan Kaufmann, San Francisco, CA, R. de Mantaras, D. Poole (Eds.)
    • Qi R., Zhang N., Poole D. Solving asymmetric decision problems with influence diagrams. Uncertainty in artificial intelligence: proceedings of the 10th conference 1994, 491-497. Morgan Kaufmann, San Francisco, CA. R. de Mantaras, D. Poole (Eds.).
    • (1994) Uncertainty in artificial intelligence: proceedings of the 10th conference , pp. 491-497
    • Qi, R.1    Zhang, N.2    Poole, D.3
  • 72
    • 26844471689 scopus 로고    scopus 로고
    • Negotiation over influence diagrams
    • Technical Report, Rey Juan Carlos University
    • Ríos J, Ríos-Insua D. Negotiation over influence diagrams. Technical Report, Rey Juan Carlos University; 2006.
    • (2006)
    • Ríos, J.1    Ríos-Insua, D.2
  • 74
    • 0022818911 scopus 로고
    • Evaluating influence diagrams
    • Shachter R.D. Evaluating influence diagrams. Operations Research 1986, 34:871-882.
    • (1986) Operations Research , vol.34 , pp. 871-882
    • Shachter, R.D.1
  • 75
  • 77
    • 0039355728 scopus 로고
    • Using potential influence diagrams for probabilistic inference and decision making
    • Morgan Kaufmann, San Francisco, CA, D. Heckerman, A. Mamdani (Eds.)
    • Shachter R.D., Ndilikilikesha P.P. Using potential influence diagrams for probabilistic inference and decision making. Uncertainty in artificial intelligence: proceedings of the 15th conference 1993, 383-390. Morgan Kaufmann, San Francisco, CA. D. Heckerman, A. Mamdani (Eds.).
    • (1993) Uncertainty in artificial intelligence: proceedings of the 15th conference , pp. 383-390
    • Shachter, R.D.1    Ndilikilikesha, P.P.2
  • 78
    • 0000251407 scopus 로고
    • Valuation-based systems for Bayesian decision analysis
    • Shenoy P.P. Valuation-based systems for Bayesian decision analysis. Operations Research 1992, 40(3):463-484.
    • (1992) Operations Research , vol.40 , Issue.3 , pp. 463-484
    • Shenoy, P.P.1
  • 79
    • 0001736479 scopus 로고    scopus 로고
    • Binary join trees for computing marginals in the Shenoy-Shafer architecture
    • Shenoy P.P. Binary join trees for computing marginals in the Shenoy-Shafer architecture. International Journal of Approximate Reasoning 1997, 17(2-3):239-263.
    • (1997) International Journal of Approximate Reasoning , vol.17 , Issue.2-3 , pp. 239-263
    • Shenoy, P.P.1
  • 80
    • 0342733586 scopus 로고    scopus 로고
    • Valuation network representation and solution of asymmetric decision problems
    • Shenoy P.P. Valuation network representation and solution of asymmetric decision problems. European Journal of Operational Research 2000, 121(3):579-608.
    • (2000) European Journal of Operational Research , vol.121 , Issue.3 , pp. 579-608
    • Shenoy, P.P.1
  • 81
    • 80053213725 scopus 로고    scopus 로고
    • Inference in hybrid Bayesian networks using mixtures of Gaussians
    • AUAI Press, Corvallis, OR, R. Dechter, T. Richardson (Eds.)
    • Shenoy P.P. Inference in hybrid Bayesian networks using mixtures of Gaussians. Uncertainty in artificial intelligence: proceedings of the 22nd conference 2006, 428-436. AUAI Press, Corvallis, OR. R. Dechter, T. Richardson (Eds.).
    • (2006) Uncertainty in artificial intelligence: proceedings of the 22nd conference , pp. 428-436
    • Shenoy, P.P.1
  • 82
    • 85170486760 scopus 로고    scopus 로고
    • Inference in hybrid Bayesian networks using mixtures of polynomials. Working paper 321, University of Kansas School of Business, Lawrence, KS; May
    • Shenoy PP, West JC. Inference in hybrid Bayesian networks using mixtures of polynomials. Working paper 321, University of Kansas School of Business, Lawrence, KS; May 2009.
    • (2009)
    • Shenoy, P.P.1    West, J.C.2
  • 84
    • 77957145715 scopus 로고    scopus 로고
    • Mixtures of polynomials in hybrid Bayesian networks with deterministic variables
    • In: Kroupa T, Vejnarova J, editors. Proceedings of the eighth workshop on uncertainty processing, Prague, Czech Republic: University of Economics
    • Shenoy PP, West JC. Mixtures of polynomials in hybrid Bayesian networks with deterministic variables. In: Kroupa T, Vejnarova J, editors. Proceedings of the eighth workshop on uncertainty processing, Prague, Czech Republic: University of Economics; 2009. p. 202-12.
    • (2009) , pp. 202-212
    • Shenoy, P.P.1    West, J.C.2
  • 85
    • 0027561028 scopus 로고
    • Structuring conditional relationships in influence diagrams
    • Smith J., Holtzman S., Matheson J. Structuring conditional relationships in influence diagrams. Operations Research 1993, 41(2):280-297.
    • (1993) Operations Research , vol.41 , Issue.2 , pp. 280-297
    • Smith, J.1    Holtzman, S.2    Matheson, J.3
  • 89
    • 0036186759 scopus 로고    scopus 로고
    • Time-critical dynamic decision modeling in medicine
    • Xiang Y., Poh K. Time-critical dynamic decision modeling in medicine. Computers in Biology and Medicine 2002, 32(2):85-97.
    • (2002) Computers in Biology and Medicine , vol.32 , Issue.2 , pp. 85-97
    • Xiang, Y.1    Poh, K.2
  • 90
    • 3843132133 scopus 로고    scopus 로고
    • Probabilistic inference in influence diagrams
    • Morgan Kaufmann, San Francisco, CA, G. Cooper, S. Moral (Eds.)
    • Zhang N.L. Probabilistic inference in influence diagrams. Uncertainty in artificial intelligence: proceedings of the 14th conference 1998, 514-522. Morgan Kaufmann, San Francisco, CA. G. Cooper, S. Moral (Eds.).
    • (1998) Uncertainty in artificial intelligence: proceedings of the 14th conference , pp. 514-522
    • Zhang, N.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.