메뉴 건너뛰기




Volumn 20, Issue 4, 2010, Pages 485-498

A sign based loss approach to model selection in nonparametric regression

Author keywords

Bayesian nonparametric regression; Bayesian variable selection; False selection rate; Generalized additive model

Indexed keywords


EID: 77956877360     PISSN: 09603174     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11222-009-9139-6     Document Type: Article
Times cited : (8)

References (49)
  • 2
    • 23044518682 scopus 로고    scopus 로고
    • Adaptive Bayesian regression splines in semiparametric generalized linear models
    • Biller, C.: Adaptive Bayesian regression splines in semiparametric generalized linear models. J. Comput. Graph. Stat. 12, 122-140 (2000).
    • (2000) J. Comput. Graph. Stat. , vol.12 , pp. 122-140
    • Biller, C.1
  • 3
    • 33845327820 scopus 로고    scopus 로고
    • Locally adaptive semiparametric estimation of the mean and variance functions in regression models
    • Chan, D., Kohn, R., Nott, D., Kirby, C.: Locally adaptive semiparametric estimation of the mean and variance functions in regression models. J. Comput. Graph. Stat. 15, 915-936 (2006).
    • (2006) J. Comput. Graph. Stat. , vol.15 , pp. 915-936
    • Chan, D.1    Kohn, R.2    Nott, D.3    Kirby, C.4
  • 4
    • 1542637559 scopus 로고    scopus 로고
    • SiZer for exploration of structure in curves
    • Chaudhuri, P., Marron, S.: SiZer for exploration of structure in curves. J. Am. Stat. Assoc. 94, 807-823 (1999).
    • (1999) J. Am. Stat. Assoc. , vol.94 , pp. 807-823
    • Chaudhuri, P.1    Marron, S.2
  • 5
    • 49549109589 scopus 로고    scopus 로고
    • Variable selection and model averaging in semiparametric overdispersed generalized linear models
    • Cottet, R., Kohn, R., Nott, D.: Variable selection and model averaging in semiparametric overdispersed generalized linear models. J. Am. Stat. Assoc. 103, 661-671 (2008).
    • (2008) J. Am. Stat. Assoc. , vol.103 , pp. 661-671
    • Cottet, R.1    Kohn, R.2    Nott, D.3
  • 8
    • 0038826037 scopus 로고    scopus 로고
    • A Bayesian approach to hybrid splines non-parametric regression
    • Dias, R., Gamerman, D.: A Bayesian approach to hybrid splines non-parametric regression. J. Stat. Comput. Simul. 72, 285-297 (2002).
    • (2002) J. Stat. Comput. Simul. , vol.72 , pp. 285-297
    • Dias, R.1    Gamerman, D.2
  • 9
    • 0010045457 scopus 로고    scopus 로고
    • Bayesian curve-fitting with free-knot splines
    • DiMatteo, I., Genovese, C. R., Kass, R. E.: Bayesian curve-fitting with free-knot splines. Biometrika 88, 1055-1071 (2001).
    • (2001) Biometrika , vol.88 , pp. 1055-1071
    • Dimatteo, I.1    Genovese, C.R.2    Kass, R.E.3
  • 10
    • 25444532788 scopus 로고    scopus 로고
    • Flexible smoothing using B-splines and penalties (with discussion)
    • Eilers, P. H. C., Marx, B. D.: Flexible smoothing using B-splines and penalties (with discussion). Stat. Sci. 11, 89-121 (1996).
    • (1996) Stat. Sci. , vol.11 , pp. 89-121
    • Eilers, P.H.C.1    Marx, B.D.2
  • 11
    • 0042042167 scopus 로고    scopus 로고
    • Sampling from the posterior distribution in generalized linear mixed models
    • Gamerman, D.: Sampling from the posterior distribution in generalized linear mixed models. Stat. Comput. 7, 57-68 (1997).
    • (1997) Stat. Comput. , vol.7 , pp. 57-68
    • Gamerman, D.1
  • 12
    • 34249730429 scopus 로고    scopus 로고
    • Feature significance in generalized additive models
    • Ganguli, B., Wand, M. P.: Feature significance in generalized additive models. Stat. Comput. 17, 179-192 (2007).
    • (2007) Stat. Comput. , vol.17 , pp. 179-192
    • Ganguli, B.1    Wand, M.P.2
  • 13
    • 84867086419 scopus 로고    scopus 로고
    • Prior distributions for variance parameters in hierarchical models
    • Gelman, A.: Prior distributions for variance parameters in hierarchical models. Bayesian Anal. 1, 515-533 (2006).
    • (2006) Bayesian Anal. , vol.1 , pp. 515-533
    • Gelman, A.1
  • 14
    • 0034408015 scopus 로고    scopus 로고
    • Type S error rates for classical and Bayesian single and multiple comparison procedures
    • Gelman, A., Tuerlinckx, F.: Type S error rates for classical and Bayesian single and multiple comparison procedures. Comput. Stat. 15, 373-390 (2000).
    • (2000) Comput. Stat. , vol.15 , pp. 373-390
    • Gelman, A.1    Tuerlinckx, F.2
  • 17
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    • Green, P. J.: Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82, 711-732 (1995).
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.J.1
  • 19
    • 80053096906 scopus 로고
    • Smoothing spline ANOVA with component-wise Bayesian confidence intervals
    • Gu, C., Wahba, G.: Smoothing spline ANOVA with component-wise Bayesian "confidence intervals". J. Comput. Graph. Stat. 2, 97-117 (1993).
    • (1993) J. Comput. Graph. Stat. , vol.2 , pp. 97-117
    • Gu, C.1    Wahba, G.2
  • 20
    • 2242445421 scopus 로고    scopus 로고
    • Bayesian regression modeling with interactions and smooth effects
    • Gustafson, P.: Bayesian regression modeling with interactions and smooth effects. J. Am. Stat. Assoc. 95, 795-806 (2000).
    • (2000) J. Am. Stat. Assoc. , vol.95 , pp. 795-806
    • Gustafson, P.1
  • 22
    • 85199967925 scopus 로고    scopus 로고
    • Pseudosplines
    • Hastie, T.: Pseudosplines. J. R. Stat. Soc. B 58, 379-396 (1996).
    • (1996) J. R. Stat. Soc. B , vol.58 , pp. 379-396
    • Hastie, T.1
  • 24
    • 0001412716 scopus 로고    scopus 로고
    • Bayesian backfitting (with discussion)
    • Hastie, T., Tibshirani, R.: Bayesian backfitting (with discussion). Stat. Sci. 15, 196-223 (2000).
    • (2000) Stat. Sci. , vol.15 , pp. 196-223
    • Hastie, T.1    Tibshirani, R.2
  • 26
    • 0034577463 scopus 로고    scopus 로고
    • A sensible formulation of the significance test
    • Jones, L. V., Tukey, J. W.: A sensible formulation of the significance test. Psychol. Methods 5, 411-414 (2000).
    • (2000) Psychol. Methods , vol.5 , pp. 411-414
    • Jones, L.V.1    Tukey, J.W.2
  • 27
    • 27944462549 scopus 로고
    • A reference Bayesian test for nested hypotheses and its relationship to the Schwarz criterion
    • Kass, R. E., Wasserman, L.: A reference Bayesian test for nested hypotheses and its relationship to the Schwarz criterion. J. Am. Stat. Assoc. 90, 928-934 (1995).
    • (1995) J. Am. Stat. Assoc. , vol.90 , pp. 928-934
    • Kass, R.E.1    Wasserman, L.2
  • 28
    • 0010081155 scopus 로고    scopus 로고
    • Nonparametric regression using linear combinations of basis functions
    • Kohn, R., Smith, M., Chan, D.: Nonparametric regression using linear combinations of basis functions. Stat. Comput. 11, 313-322 (2001).
    • (2001) Stat. Comput. , vol.11 , pp. 313-322
    • Kohn, R.1    Smith, M.2    Chan, D.3
  • 30
    • 0034147039 scopus 로고    scopus 로고
    • Bayesian inference for finite mixtures of generalized linear models with random effects
    • Lenk, P. J., DeSarbo, W. S.: Bayesian inference for finite mixtures of generalized linear models with random effects. Psychometrika 65, 93-119 (2000).
    • (2000) Psychometrika , vol.65 , pp. 93-119
    • Lenk, P.J.1    Desarbo, W.S.2
  • 32
    • 77956878621 scopus 로고    scopus 로고
    • Lunn, D. J., Best, N., Whittaker, J. C.: Generic reversible jump MCMC using graphical models. Stat. Comput. (2008, in press).
  • 33
    • 33845338012 scopus 로고    scopus 로고
    • Semiparametric estimation of mean and variance functions for non-Gaussian data
    • Nott, D.: Semiparametric estimation of mean and variance functions for non-Gaussian data. Comput. Stat. 21, 603-620 (2006).
    • (2006) Comput. Stat. , vol.21 , pp. 603-620
    • Nott, D.1
  • 34
    • 34248995539 scopus 로고    scopus 로고
    • Coefficient sign prediction methods for model selection
    • Nott, D. J., Kuk, A. Y. C.: Coefficient sign prediction methods for model selection. J. R. Stat. Soc. B 69, 447-461 (2007).
    • (2007) J. R. Stat. Soc. B , vol.69 , pp. 447-461
    • Nott, D.J.1    Kuk, A.Y.C.2
  • 35
    • 18544382833 scopus 로고    scopus 로고
    • Generalized additive models for location, scale and shape
    • Rigby, R. A., Stasinopoulos, D. M.: Generalized additive models for location, scale and shape. Appl. Stat. 54, 507-554 (2005).
    • (2005) Appl. Stat. , vol.54 , pp. 507-554
    • Rigby, R.A.1    Stasinopoulos, D.M.2
  • 37
    • 0000307942 scopus 로고    scopus 로고
    • Variable selection and function estimation in additive nonparametric regression using a data-based prior (with discussion)
    • Shively, T. S., Kohn, R., Wood, S.: Variable selection and function estimation in additive nonparametric regression using a data-based prior (with discussion). J. Am. Stat. Assoc. 94, 777-806 (1999).
    • (1999) J. Am. Stat. Assoc. , vol.94 , pp. 777-806
    • Shively, T.S.1    Kohn, R.2    Wood, S.3
  • 38
    • 0000824232 scopus 로고    scopus 로고
    • Nonparametric regression using Bayesian variable selection
    • Smith, M., Kohn, R.: Nonparametric regression using Bayesian variable selection. J. Econom. 75, 317-344 (1996).
    • (1996) J. Econom. , vol.75 , pp. 317-344
    • Smith, M.1    Kohn, R.2
  • 40
    • 35648947259 scopus 로고    scopus 로고
    • WinBUGSVersion 1.2 User Manual
    • Software available at
    • Spiegelhalter, D. J., Thomas, A., Best, N.: WinBUGSVersion 1. 2 User Manual. MRC Biostatistics Unit. Software available at http://www. mrcbsu. cam. ac. uk/bugs/winbugs/contents. shtml (1999).
    • (1999) MRC Biostatistics Unit
    • Spiegelhalter, D.J.1    Thomas, A.2    Best, N.3
  • 42
    • 0032347252 scopus 로고    scopus 로고
    • A Bayesian approach to robust binary nonparametric regression
    • Wood, S., Kohn, R.: A Bayesian approach to robust binary nonparametric regression. J. Am. Stat. Assoc. 93, 203-213 (1998).
    • (1998) J. Am. Stat. Assoc. , vol.93 , pp. 203-213
    • Wood, S.1    Kohn, R.2
  • 43
    • 0036427356 scopus 로고    scopus 로고
    • Model selection in spline nonparametric regression
    • Wood, S., Kohn, R., Shively, T., Jiang, W.: Model selection in spline nonparametric regression. J. R. Stat. Soc. B 64, 119-139 (2002).
    • (2002) J. R. Stat. Soc. B , vol.64 , pp. 119-139
    • Wood, S.1    Kohn, R.2    Shively, T.3    Jiang, W.4
  • 44
    • 33947248175 scopus 로고    scopus 로고
    • Controlling variable selection by the addition of pseudo-variables
    • Wu, Y., Boos, D., Stefanski, L. A.: Controlling variable selection by the addition of pseudo-variables. J. Am. Stat. Assoc. 102, 235-243 (2007).
    • (2007) J. Am. Stat. Assoc. , vol.102 , pp. 235-243
    • Wu, Y.1    Boos, D.2    Stefanski, L.A.3
  • 45
    • 0345832334 scopus 로고    scopus 로고
    • Estimation and variable selection in nonparametric heteroscedastic regression
    • Yau, P., Kohn, R.: Estimation and variable selection in nonparametric heteroscedastic regression. Stat. Comput. 13, 191-208 (2003).
    • (2003) Stat. Comput. , vol.13 , pp. 191-208
    • Yau, P.1    Kohn, R.2
  • 46
    • 0037352633 scopus 로고    scopus 로고
    • Bayesian variable selection and model averaging in high-dimensional multinomial nonparametric regression
    • Yau, P., Kohn, R., Wood, S.: Bayesian variable selection and model averaging in high-dimensional multinomial nonparametric regression. J. Comput. Graph. Stat. 12, 23-54 (2003).
    • (2003) J. Comput. Graph. Stat. , vol.12 , pp. 23-54
    • Yau, P.1    Kohn, R.2    Wood, S.3
  • 47
    • 34250717141 scopus 로고    scopus 로고
    • From ANOVA to variance components. Discussion of Gelman (2005) Analysis of variance-why it is more important than ever
    • Zaslavsky, A. M.: From ANOVA to variance components. Discussion of Gelman (2005) Analysis of variance-why it is more important than ever. Ann. Stat. 33, 1-53 (2005).
    • (2005) Ann. Stat. , vol.33 , pp. 1-53
    • Zaslavsky, A.M.1
  • 48
    • 21844516868 scopus 로고
    • Consistent variable selection in linear models
    • Zheng, X., Loh, W.: Consistent variable selection in linear models. J. Am. Stat. Assoc. 90, 151-156 (1995).
    • (1995) J. Am. Stat. Assoc. , vol.90 , pp. 151-156
    • Zheng, X.1    Loh, W.2
  • 49
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. B 67, 301-320 (2005).
    • (2005) J. R. Stat. Soc. B , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.