-
1
-
-
0032350790
-
On a reverse form of the Brascamp-Lieb inequality
-
F. Barthe, On a reverse form of the Brascamp-Lieb inequality, Inv. Math. 134 (1998), 335-361. (Pubitemid 128356132)
-
(1998)
Inventiones Mathematicae
, vol.134
, Issue.2
, pp. 335-361
-
-
Barthe, F.1
-
2
-
-
33750826562
-
On the multilinear restriction and Kakeya conjectures
-
J. M. Bennett, A. Carbery and T. Tao, On the multilinear restriction and Kakeya conjectures, Acta Math. 196 (2006), no.2, 261-302.
-
(2006)
Acta Math.
, vol.196
, Issue.2
, pp. 261-302
-
-
Bennett, J.M.1
Carbery, A.2
Tao, T.3
-
3
-
-
39449135268
-
The Brascamp-Lieb inequalities: Finiteness, structure, and extremals
-
J. M. Bennett, A. Carbery, M. Christ and T. Tao, The Brascamp-Lieb inequalities: finiteness, structure, and extremals, Geom. Funct. Anal. 17 (2008), no.5, 1343-1415.
-
(2008)
Geom. Funct. Anal.
, vol.17
, Issue.5
, pp. 1343-1415
-
-
Bennett, J.M.1
Carbery, A.2
Christ, M.3
Tao, T.4
-
4
-
-
0001126703
-
Best constants in Young's inequality, its converse, and its generalization to more than three functions
-
H. J. Brascamp and E. H. Lieb, Best constants in Young's inequality, its converse, and its generalization to more than three functions, Advances in Math. 20 (1976), no.2, 151-173.
-
(1976)
Advances in Math.
, vol.20
, Issue.2
, pp. 151-173
-
-
Brascamp, H.J.1
Lieb, E.H.2
-
5
-
-
0001378271
-
A general rearrangement inequality for multiple integrals
-
H. J. Brascamp, E. H. Lieb and J. M. Luttinger, A general rearrangement inequality for multiple integrals, J. Funct. Anal. 17 (1974), 227-237.
-
(1974)
J. Funct. Anal.
, vol.17
, pp. 227-237
-
-
Brascamp, H.J.1
Lieb, E.H.2
Luttinger, J.M.3
-
6
-
-
77956791797
-
An inequality for integrals
-
A. P. Caldeŕon, An inequality for integrals, Studia Math. 57 (1976), no.3, 275-277.
-
(1976)
Studia Math.
, vol.57
, Issue.3
, pp. 275-277
-
-
Caldeŕon, A.P.1
-
7
-
-
84867955093
-
A sharp analog of Young's inequality on SN and related entropy inequalities
-
E. A. Carlen, E. H. Lieb and M. Loss, A sharp analog of Young's inequality on SN and related entropy inequalities, Jour. Geom. Anal. 14 (2004), 487-520.
-
(2004)
Jour. Geom. Anal.
, vol.14
, pp. 487-520
-
-
Carlen, E.A.1
Lieb, E.H.2
Loss, M.3
-
8
-
-
0035532715
-
On certain elementary trilinear operators
-
M. Christ, On certain elementary trilinear operators, Math. Res. Lett. 8 (2001), no.1-2, 43-56.
-
(2001)
Math. Res. Lett.
, vol.8
, Issue.1-2
, pp. 43-56
-
-
Christ, M.1
-
9
-
-
29444457391
-
On multilinear oscillatory integrals, nonsingular and singular
-
M. Christ, X. Li, T. Tao, and C. Thiele, On multilinear oscillatory integrals, nonsingular and singular, Duke Math. J. 130 (2005), no.2, 321-351.
-
(2005)
Duke Math. J.
, vol.130
, Issue.2
, pp. 321-351
-
-
Christ, M.1
Li, X.2
Tao, T.3
Thiele, C.4
-
10
-
-
10044298838
-
A generalization of Hölder's inequality and some probability inequalities
-
H. Finner, A generalization of Hölder's inequality and some probability inequalities, Ann. Probab. 20 (1992), no.4, 1893-1901.
-
(1992)
Ann. Probab.
, vol.20
, Issue.4
, pp. 1893-1901
-
-
Finner, H.1
-
11
-
-
10044245742
-
Hypergraphs, entropy, and inequalities, Amer.
-
E. Friedgut, Hypergraphs, entropy, and inequalities, Amer. Math. Monthly 111 (2004), no.9, 749-760.
-
(2004)
Math. Monthly
, vol.111
, Issue.9
, pp. 749-760
-
-
Friedgut, E.1
-
13
-
-
0344669302
-
-
New York-Montreal, Que.London
-
T. W. Hungerford, Algebra, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.London, 1974.
-
(1974)
Algebra, Holt, Rinehart and Winston, Inc.
-
-
Hungerford, T.W.1
-
14
-
-
0000201926
-
Gaussian kernels have only Gaussian maximizers
-
E. Lieb, Gaussian kernels have only Gaussian maximizers, Invent. Math. 102 (1990), no.1, 179-208.
-
(1990)
Invent. Math.
, vol.102
, Issue.1
, pp. 179-208
-
-
Lieb, E.1
-
15
-
-
0001289565
-
An inequality related to the isoperimetric inequality
-
L. H. Loomis and H. Whitney, An inequality related to the isoperimetric inequality, Bull. Amer. Math. Soc 55, (1949). 961-962.
-
(1949)
Bull. Amer. Math. Soc
, vol.55
, pp. 961-962
-
-
Loomis, L.H.1
Whitney, H.2
-
16
-
-
0006658738
-
Why Hölder's inequality should be called Rogers' inequality
-
L. Maligranda, Why Hölder's inequality should be called Rogers' inequality, Math. Inequal. Appl. 1 (1998), no.1, 69-83.
-
(1998)
Math. Inequal. Appl.
, vol.1
, Issue.1
, pp. 69-83
-
-
Maligranda, L.1
-
17
-
-
0010300426
-
An extension of a certain theorem in inequalities
-
L. J. Rogers, An extension of a certain theorem in inequalities, Messenger of Math. 17 (1888), 145-150.
-
(1888)
Messenger of Math.
, vol.17
, pp. 145-150
-
-
Rogers, L.J.1
|