메뉴 건너뛰기




Volumn 17, Issue 4, 2010, Pages 647-666

Finite bounds for Hölder-Brascamp-Lieb multilinear inequalities

Author keywords

[No Author keywords available]

Indexed keywords


EID: 77956836071     PISSN: 10732780     EISSN: None     Source Type: Journal    
DOI: 10.4310/MRL.2010.v17.n4.a6     Document Type: Article
Times cited : (95)

References (17)
  • 1
    • 0032350790 scopus 로고    scopus 로고
    • On a reverse form of the Brascamp-Lieb inequality
    • F. Barthe, On a reverse form of the Brascamp-Lieb inequality, Inv. Math. 134 (1998), 335-361. (Pubitemid 128356132)
    • (1998) Inventiones Mathematicae , vol.134 , Issue.2 , pp. 335-361
    • Barthe, F.1
  • 2
    • 33750826562 scopus 로고    scopus 로고
    • On the multilinear restriction and Kakeya conjectures
    • J. M. Bennett, A. Carbery and T. Tao, On the multilinear restriction and Kakeya conjectures, Acta Math. 196 (2006), no.2, 261-302.
    • (2006) Acta Math. , vol.196 , Issue.2 , pp. 261-302
    • Bennett, J.M.1    Carbery, A.2    Tao, T.3
  • 3
    • 39449135268 scopus 로고    scopus 로고
    • The Brascamp-Lieb inequalities: Finiteness, structure, and extremals
    • J. M. Bennett, A. Carbery, M. Christ and T. Tao, The Brascamp-Lieb inequalities: finiteness, structure, and extremals, Geom. Funct. Anal. 17 (2008), no.5, 1343-1415.
    • (2008) Geom. Funct. Anal. , vol.17 , Issue.5 , pp. 1343-1415
    • Bennett, J.M.1    Carbery, A.2    Christ, M.3    Tao, T.4
  • 4
    • 0001126703 scopus 로고
    • Best constants in Young's inequality, its converse, and its generalization to more than three functions
    • H. J. Brascamp and E. H. Lieb, Best constants in Young's inequality, its converse, and its generalization to more than three functions, Advances in Math. 20 (1976), no.2, 151-173.
    • (1976) Advances in Math. , vol.20 , Issue.2 , pp. 151-173
    • Brascamp, H.J.1    Lieb, E.H.2
  • 5
    • 0001378271 scopus 로고
    • A general rearrangement inequality for multiple integrals
    • H. J. Brascamp, E. H. Lieb and J. M. Luttinger, A general rearrangement inequality for multiple integrals, J. Funct. Anal. 17 (1974), 227-237.
    • (1974) J. Funct. Anal. , vol.17 , pp. 227-237
    • Brascamp, H.J.1    Lieb, E.H.2    Luttinger, J.M.3
  • 6
    • 77956791797 scopus 로고
    • An inequality for integrals
    • A. P. Caldeŕon, An inequality for integrals, Studia Math. 57 (1976), no.3, 275-277.
    • (1976) Studia Math. , vol.57 , Issue.3 , pp. 275-277
    • Caldeŕon, A.P.1
  • 7
    • 84867955093 scopus 로고    scopus 로고
    • A sharp analog of Young's inequality on SN and related entropy inequalities
    • E. A. Carlen, E. H. Lieb and M. Loss, A sharp analog of Young's inequality on SN and related entropy inequalities, Jour. Geom. Anal. 14 (2004), 487-520.
    • (2004) Jour. Geom. Anal. , vol.14 , pp. 487-520
    • Carlen, E.A.1    Lieb, E.H.2    Loss, M.3
  • 8
    • 0035532715 scopus 로고    scopus 로고
    • On certain elementary trilinear operators
    • M. Christ, On certain elementary trilinear operators, Math. Res. Lett. 8 (2001), no.1-2, 43-56.
    • (2001) Math. Res. Lett. , vol.8 , Issue.1-2 , pp. 43-56
    • Christ, M.1
  • 9
    • 29444457391 scopus 로고    scopus 로고
    • On multilinear oscillatory integrals, nonsingular and singular
    • M. Christ, X. Li, T. Tao, and C. Thiele, On multilinear oscillatory integrals, nonsingular and singular, Duke Math. J. 130 (2005), no.2, 321-351.
    • (2005) Duke Math. J. , vol.130 , Issue.2 , pp. 321-351
    • Christ, M.1    Li, X.2    Tao, T.3    Thiele, C.4
  • 10
    • 10044298838 scopus 로고
    • A generalization of Hölder's inequality and some probability inequalities
    • H. Finner, A generalization of Hölder's inequality and some probability inequalities, Ann. Probab. 20 (1992), no.4, 1893-1901.
    • (1992) Ann. Probab. , vol.20 , Issue.4 , pp. 1893-1901
    • Finner, H.1
  • 11
    • 10044245742 scopus 로고    scopus 로고
    • Hypergraphs, entropy, and inequalities, Amer.
    • E. Friedgut, Hypergraphs, entropy, and inequalities, Amer. Math. Monthly 111 (2004), no.9, 749-760.
    • (2004) Math. Monthly , vol.111 , Issue.9 , pp. 749-760
    • Friedgut, E.1
  • 14
    • 0000201926 scopus 로고
    • Gaussian kernels have only Gaussian maximizers
    • E. Lieb, Gaussian kernels have only Gaussian maximizers, Invent. Math. 102 (1990), no.1, 179-208.
    • (1990) Invent. Math. , vol.102 , Issue.1 , pp. 179-208
    • Lieb, E.1
  • 15
    • 0001289565 scopus 로고
    • An inequality related to the isoperimetric inequality
    • L. H. Loomis and H. Whitney, An inequality related to the isoperimetric inequality, Bull. Amer. Math. Soc 55, (1949). 961-962.
    • (1949) Bull. Amer. Math. Soc , vol.55 , pp. 961-962
    • Loomis, L.H.1    Whitney, H.2
  • 16
    • 0006658738 scopus 로고    scopus 로고
    • Why Hölder's inequality should be called Rogers' inequality
    • L. Maligranda, Why Hölder's inequality should be called Rogers' inequality, Math. Inequal. Appl. 1 (1998), no.1, 69-83.
    • (1998) Math. Inequal. Appl. , vol.1 , Issue.1 , pp. 69-83
    • Maligranda, L.1
  • 17
    • 0010300426 scopus 로고
    • An extension of a certain theorem in inequalities
    • L. J. Rogers, An extension of a certain theorem in inequalities, Messenger of Math. 17 (1888), 145-150.
    • (1888) Messenger of Math. , vol.17 , pp. 145-150
    • Rogers, L.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.