메뉴 건너뛰기




Volumn 66, Issue 3, 2010, Pages 934-948

Case-control studies of gene-environment interaction: Bayesian design and analysis

Author keywords

Case only design; Gene environment independence; Highest posterior density interval; Molecular epidemiology of colorectal cancer; Multinomial Dirichlet; Posterior odds

Indexed keywords

BAYESIAN NETWORKS; DISEASES; STATISTICAL TESTS; UNCERTAINTY ANALYSIS;

EID: 77956825098     PISSN: 0006341X     EISSN: 15410420     Source Type: Journal    
DOI: 10.1111/j.1541-0420.2009.01357.x     Document Type: Article
Times cited : (19)

References (49)
  • 1
    • 0346789285 scopus 로고    scopus 로고
    • Sample size determination: A review
    • Adcock, C. J. (1997). Sample size determination: A review. The Statistician 46, 261 283.
    • (1997) The Statistician , vol.46 , pp. 261-283
    • Adcock, C.J.1
  • 3
    • 0037330505 scopus 로고    scopus 로고
    • Investigation of interaction between N-acetyltransferase 2 and heterocyclic amines as potential risk factors for colorectalcancer
    • Barrett, J. H., Smith, G., Waxman, R., Gooderham, N., Lightfoot, T., Garner, R. C., Augustsson, K., Wolf, C. R., Bishop, D. T., Forman, D., and The Colorectal Cancer Study Group 2003). Investigation of interaction between N-acetyltransferase 2 and heterocyclic amines as potential risk factors for colorectalcancer. Carcinogenesis 24, 275 282.
    • (2003) Carcinogenesis , vol.24 , pp. 275-282
    • Barrett, J.H.1    Smith, G.2    Waxman, R.3    Gooderham, N.4    Lightfoot, T.5    Garner, R.C.6    Augustsson, K.7    Wolf, C.R.8    Bishop, D.T.9    Forman, D.10
  • 5
    • 0347767518 scopus 로고    scopus 로고
    • Statistical inference as a decision problem: The choice of sample size
    • Bernardo, J. M. (1997). Statistical inference as a decision problem: The choice of sample size. The Statistician 46, 151 153.
    • (1997) The Statistician , vol.46 , pp. 151-153
    • Bernardo, J.M.1
  • 6
    • 44949250001 scopus 로고    scopus 로고
    • Robust Bayesian sample size determination in clinical trials
    • Brutti, P., DeSantis, F., and Gubbiotti, S. (2008). Robust Bayesian sample size determination in clinical trials. Statistics in Medicine 27, 2290 2306.
    • (2008) Statistics in Medicine , vol.27 , pp. 2290-2306
    • Brutti, P.1    Desantis, F.2    Gubbiotti, S.3
  • 8
    • 12744255341 scopus 로고    scopus 로고
    • Semiparametric maximum likelihood estimation exploiting gene-environment independence in case-control studies
    • Chatterjee, N. and Carroll, R. J. (2005). Semiparametric maximum likelihood estimation exploiting gene-environment independence in case-control studies. Biometrika 92, 399 418.
    • (2005) Biometrika , vol.92 , pp. 399-418
    • Chatterjee, N.1    Carroll, R.J.2
  • 10
    • 33845740762 scopus 로고    scopus 로고
    • Using historical data for Bayesian sample size determination
    • De Santis, F. (2007). Using historical data for Bayesian sample size determination. Journal of the Royal Statistical Society, Series A 170 (1 95 113.
    • (2007) Journal of the Royal Statistical Society, Series A , vol.170 , Issue.1 , pp. 95-113
    • De Santis, F.1
  • 11
    • 3042812826 scopus 로고    scopus 로고
    • Optimal predictive sample size for case-control studies
    • De Santis, F., Pacifico, M. P., and Sambucini, V. (2004). Optimal predictive sample size for case-control studies. Applied Statistics 53 (1 427 441.
    • (2004) Applied Statistics , vol.53 , Issue.1 , pp. 427-441
    • De Santis, F.1    Pacifico, M.P.2    Sambucini, V.3
  • 12
    • 0031472899 scopus 로고    scopus 로고
    • Power and sample size calculations for case-control studies of gene-environment interactions with a polytomous exposure variable
    • Foppa, I. and Spiegelman, D. (1997). Power and sample size calculations for case-control studies of gene-environment interactions with a polytomous exposure variable. American Journal of Epidemiology 146, 596 604.
    • (1997) American Journal of Epidemiology , vol.146 , pp. 596-604
    • Foppa, I.1    Spiegelman, D.2
  • 13
    • 0345196595 scopus 로고    scopus 로고
    • Power and sample size calculations in case-control studies of gene-environment interactions: Comments on different approaches
    • Garcia-Closas, M. and Lubin, J. (1999). Power and sample size calculations in case-control studies of gene-environment interactions: Comments on different approaches. American Journal of Epidemiology 149, 689 692.
    • (1999) American Journal of Epidemiology , vol.149 , pp. 689-692
    • Garcia-Closas, M.1    Lubin, J.2
  • 14
    • 0037080655 scopus 로고    scopus 로고
    • Sample size requirements for matched case-control studies of gene-environment interaction
    • Gauderman, W. J. (2002). Sample size requirements for matched case-control studies of gene-environment interaction. Statistics in Medicine 21, 35 50.
    • (2002) Statistics in Medicine , vol.21 , pp. 35-50
    • Gauderman, W.J.1
  • 15
    • 0001032163 scopus 로고
    • Evaluating the accuracy of sampling-based approaches to calculating posterior moments
    • J. M. Bernado. J. O. Berger. A. P. Dawid. and. A. F. M. Smith. eds. Oxford, UK. Clarendon Press
    • Geweke, J. (1992). Evaluating the accuracy of sampling-based approaches to calculating posterior moments. In Bayesian Statistics 4, J. M. Bernado, J. O. Berger, A. P. Dawid, and A. F. M. Smith (eds 169 188. Oxford, UK : Clarendon Press.
    • (1992) Bayesian Statistics 4 , pp. 169-188
    • Geweke, J.1
  • 17
    • 0031442623 scopus 로고    scopus 로고
    • Detecting gene-environment interactions using a case-control design
    • Goldstein, A., Falk, R., Korczak, J., and Lubin, J. (1997). Detecting gene-environment interactions using a case-control design. Genetic Epidemiology 14, 1085 1089.
    • (1997) Genetic Epidemiology , vol.14 , pp. 1085-1089
    • Goldstein, A.1    Falk, R.2    Korczak, J.3    Lubin, J.4
  • 18
    • 0012785073 scopus 로고    scopus 로고
    • A Bayesian approach to case-control studies with errors in covariables
    • Gustafson, P., Le, N., and Vallee, M. (2002). A Bayesian approach to case-control studies with errors in covariables. Biostatistics 3, 229 243.
    • (2002) Biostatistics , vol.3 , pp. 229-243
    • Gustafson, P.1    Le, N.2    Vallee, M.3
  • 19
    • 42249109208 scopus 로고    scopus 로고
    • Sample size requirements for indirect association studies of gene-environment interactions (G × E)
    • Hein, R., Beckmann, L., and Chang-Claude, J. (2008). Sample size requirements for indirect association studies of gene-environment interactions (G × E). Genetic Epidemiology 32, 235 245.
    • (2008) Genetic Epidemiology , vol.32 , pp. 235-245
    • Hein, R.1    Beckmann, L.2    Chang-Claude, J.3
  • 20
    • 0028027644 scopus 로고
    • Minimum sample size estimation to detect gene-environment interaction in case-control designs
    • Hwang, S., Beaty, T., Liang, K., Coresh, J., and Khoury, M. (1994). Minimum sample size estimation to detect gene-environment interaction in case-control designs. American Journal of Epidemiology 140, 1029 1037.
    • (1994) American Journal of Epidemiology , vol.140 , pp. 1029-1037
    • Hwang, S.1    Beaty, T.2    Liang, K.3    Coresh, J.4    Khoury, M.5
  • 22
    • 0030903282 scopus 로고    scopus 로고
    • Bayesian and mixed Bayesian/likelihood criteria for sample size determination
    • DOI 10.1002/(SICI)1097-0258(19970415)16:7<769::AID-SIM495>3.0.CO;2- V
    • Joseph, L., du Berger, R., and Bélisle, P. (1997). Bayesian and mixed Bayesian/likelihood criteria for sample size determination. Statistics in Medicine 16, 769 781. (Pubitemid 27165682)
    • (1997) Statistics in Medicine , vol.16 , Issue.7 , pp. 769-781
    • Joseph, L.1    Du Berger, R.2    Belisle, P.3
  • 23
    • 0004535333 scopus 로고    scopus 로고
    • Interval-based versus decision theoretic criteria for the choice of sample size
    • Joseph, L. and Wolfson, D. B. (1997). Interval-based versus decision theoretic criteria for the choice of sample size. The Statistician 46, 145 149.
    • (1997) The Statistician , vol.46 , pp. 145-149
    • Joseph, L.1    Wolfson, D.B.2
  • 24
    • 0002335698 scopus 로고
    • Sample size calculations for binomial proportions via highest posterior density intervals
    • Joseph, L., Wolfson, D., and du Berger, R. (1995). Sample size calculations for binomial proportions via highest posterior density intervals. The Statistician 44, 143 154.
    • (1995) The Statistician , vol.44 , pp. 143-154
    • Joseph, L.1    Wolfson, D.2    Du Berger, R.3
  • 25
    • 33847059098 scopus 로고    scopus 로고
    • Exploiting gene-environmental interaction to detect genetic associations
    • Kraft, P., Yen, Y. C., Stram, D. O, Morrison, J., and Gauderman, W. J. (2007). Exploiting gene-environmental interaction to detect genetic associations. Human Heredity 63, 111 119.
    • (2007) Human Heredity , vol.63 , pp. 111-119
    • Kraft, P.1    Yen, Y.C.2    Stram, D.O.3    Morrison, J.4    Gauderman, W.J.5
  • 26
    • 0011142250 scopus 로고
    • The exact posterior distribution of the cross-ratio of a 2 × 2 contingency table
    • Latorre, G. (1982). The exact posterior distribution of the cross-ratio of a 2 × 2 contingency table. Journal of Statistical Computation and Simulation 16, 19 24.
    • (1982) Journal of Statistical Computation and Simulation , vol.16 , pp. 19-24
    • Latorre, G.1
  • 27
    • 33745651313 scopus 로고
    • Bayesian inference in 2 × 2 and 2 × 2 × 2 contingency tables
    • Latorre, G. (1984). Bayesian inference in 2 × 2 and 2 × 2 × 2 contingency tables. Metron 42, 169 184.
    • (1984) Metron , vol.42 , pp. 169-184
    • Latorre, G.1
  • 28
    • 0039438154 scopus 로고    scopus 로고
    • Bayesian procedures for prediction analysis of implication hypothesis in 2 × 2 contingency tables
    • Lecoutre, B. and Charron, C. (2000). Bayesian procedures for prediction analysis of implication hypothesis in 2 × 2 contingency tables. Journal of Educational and Behavioral Statistics 25, 185 201.
    • (2000) Journal of Educational and Behavioral Statistics , vol.25 , pp. 185-201
    • Lecoutre, B.1    Charron, C.2
  • 29
    • 60149103126 scopus 로고    scopus 로고
    • Detecting gene-environment interactions using a combined case-only and case-control approach
    • Li, D. and Conti, D. V. (2009). Detecting gene-environment interactions using a combined case-only and case-control approach. American Journal of Epidemiology 169, 497 504.
    • (2009) American Journal of Epidemiology , vol.169 , pp. 497-504
    • Li, D.1    Conti, D.V.2
  • 30
    • 0011081060 scopus 로고
    • The Bayesian analysis of contingency tables
    • Lindley, D. V. (1964). The Bayesian analysis of contingency tables. The Annals of Mathematical Statistics 35, 1622 1643.
    • (1964) The Annals of Mathematical Statistics , vol.35 , pp. 1622-1643
    • Lindley, D.V.1
  • 31
    • 0346983718 scopus 로고    scopus 로고
    • The choice of sample size
    • Lindley, D. V. (1997). The choice of sample size. The Statistician 46, 129 138.
    • (1997) The Statistician , vol.46 , pp. 129-138
    • Lindley, D.V.1
  • 32
    • 85153230814 scopus 로고    scopus 로고
    • Sample size determination for studies of gene-environment interaction
    • Luan, J. A., Wong, M. Y., and Day, N. E. (2001). Sample size determination for studies of gene-environment interaction. International Journal of Epidemiology 30, 1049 1054.
    • (2001) International Journal of Epidemiology , vol.30 , pp. 1049-1054
    • Luan, J.A.1    Wong, M.Y.2    Day, N.E.3
  • 34
    • 49749089301 scopus 로고    scopus 로고
    • Exploiting gene-environment independence for analysis of case-control studies: An empirical-Bayes type shrinkage estimator to trade off between bias and efficiency
    • Mukherjee, B. and Chatterjee, N. (2008). Exploiting gene-environment independence for analysis of case-control studies: An empirical-Bayes type shrinkage estimator to trade off between bias and efficiency. Biometrics 64, 685 694.
    • (2008) Biometrics , vol.64 , pp. 685-694
    • Mukherjee, B.1    Chatterjee, N.2
  • 35
    • 34548407472 scopus 로고    scopus 로고
    • Semiparametric Bayesian analysis of case-control data under conditional gene-environment independence
    • Mukherjee, B., Zhang, L., Ghosh, M., and Sinha, S. (2007). Semiparametric Bayesian analysis of case-control data under conditional gene-environment independence. Biometrics 63, 834 844.
    • (2007) Biometrics , vol.63 , pp. 834-844
    • Mukherjee, B.1    Zhang, L.2    Ghosh, M.3    Sinha, S.4
  • 36
    • 58449134949 scopus 로고    scopus 로고
    • Testing gene-environment interaction from case-control data: A novel study of Type-1 error, power and designs
    • Mukherjee, B., Ahn, J., Gruber, S. B., Rennert, G., Moreno, V., and Chatterjee, N. (2008). Testing gene-environment interaction from case-control data: A novel study of Type-1 error, power and designs. Genetic Epidemiology 32, 615 626.
    • (2008) Genetic Epidemiology , vol.32 , pp. 615-626
    • Mukherjee, B.1    Ahn, J.2    Gruber, S.B.3    Rennert, G.4    Moreno, V.5    Chatterjee, N.6
  • 37
    • 0000462339 scopus 로고    scopus 로고
    • A Bayesian semiparametric model for case-control studies with errors in variables
    • Müller, P. and Roeder, K. (1997). A Bayesian semiparametric model for case-control studies with errors in variables. Biometrika 84, 523 537.
    • (1997) Biometrika , vol.84 , pp. 523-537
    • Müller, P.1    Roeder, K.2
  • 38
    • 0042961774 scopus 로고    scopus 로고
    • On Bayesian analysis, Bayesian decision theory and the sample size problem
    • Pham-Gia, T. (1997). On Bayesian analysis, Bayesian decision theory and the sample size problem. The Statistician 46, 139 144.
    • (1997) The Statistician , vol.46 , pp. 139-144
    • Pham-Gia, T.1
  • 39
    • 0028089404 scopus 로고
    • Non hierarchical logistic models and case-only designs for assessing susceptibility in population-based case-control studies
    • Piegorsch, W. W., Weinberg, C. R., and Taylor, J. (1994). Non hierarchical logistic models and case-only designs for assessing susceptibility in population-based case-control studies. Statistics in Medicine 13, 153 162.
    • (1994) Statistics in Medicine , vol.13 , pp. 153-162
    • Piegorsch, W.W.1    Weinberg, C.R.2    Taylor, J.3
  • 42
    • 1642280191 scopus 로고    scopus 로고
    • Bayesian semiparametric modeling for matched case-control studies with multiple disease states
    • Sinha, S., Mukherjee, B., and Ghosh, M. (2004). Bayesian semiparametric modeling for matched case-control studies with multiple disease states. Biometrics 60, 41 49.
    • (2004) Biometrics , vol.60 , pp. 41-49
    • Sinha, S.1    Mukherjee, B.2    Ghosh, M.3
  • 46
    • 0348217850 scopus 로고    scopus 로고
    • How many samples? A Bayesian nonparametric approach
    • Walker, S. G. (2003). How many samples? A Bayesian nonparametric approach. The Statistician 52, 475 482.
    • (2003) The Statistician , vol.52 , pp. 475-482
    • Walker, S.G.1
  • 47
    • 0041419339 scopus 로고    scopus 로고
    • A simuldation-based approach to Bayesian sample size determination for performance under a given model and separating models
    • Wang, F. and Gelfand, A. E. (2002). A simuldation-based approach to Bayesian sample size determination for performance under a given model and separating models. Statistical Sciences 17, 193 208.
    • (2002) Statistical Sciences , vol.17 , pp. 193-208
    • Wang, F.1    Gelfand, A.E.2
  • 48
    • 0010974004 scopus 로고    scopus 로고
    • Bayesian sample size calculation for hypothesis testing
    • Weiss, R. (1997). Bayesian sample size calculation for hypothesis testing. The Statistician 46, 185 191.
    • (1997) The Statistician , vol.46 , pp. 185-191
    • Weiss, R.1
  • 49
    • 0030812695 scopus 로고    scopus 로고
    • Sample size requirements in case-only designs to detect gene-environment interaction
    • Yang, Q., Khoury, M. J., and Flanders, W. D. (1997). Sample size requirements in case-only designs to detect gene-environment interaction. American Journal of Epidemiology 146, 713 720.
    • (1997) American Journal of Epidemiology , vol.146 , pp. 713-720
    • Yang, Q.1    Khoury, M.J.2    Flanders, W.D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.