메뉴 건너뛰기




Volumn 24, Issue 3, 2010, Pages 393-413

A general framework for relation graph clustering

Author keywords

Bregman divergences; Heterogeneous links; Homogeneous links; Relational graph clustering

Indexed keywords

DATA MINING; GRAPH ALGORITHMS; GRAPH STRUCTURES; GRAPH THEORY; GRAPHIC METHODS;

EID: 77956712814     PISSN: 02191377     EISSN: 02193116     Source Type: Journal    
DOI: 10.1007/s10115-009-0255-6     Document Type: Article
Times cited : (19)

References (38)
  • 1
    • 12244261221 scopus 로고    scopus 로고
    • Banerjee A, Dhillon I, Ghosh J, Merugu S, Modha D (2004) A generalized maximum entropy approach to bregman co-clustering and matrix approximation. In: Proceedings of the tenth ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, NY, USA, pp 509-514.
  • 3
    • 77956685910 scopus 로고    scopus 로고
    • Bui T, Jones C (1993) A heuristic for reducing fill in sparse matrix factorization. In: 6th SIAM conference on parallel processing for scientific computing, pp 445-452.
  • 4
    • 0027211363 scopus 로고    scopus 로고
    • Chan P, Schlag M, Zien J (1993) Spectral k-way ratio-cut partitioning and clustering. In: Proceedings of the 30th international conference on design automation. ACM, New York, NY, USA, pp 749-754.
  • 5
    • 77956702955 scopus 로고    scopus 로고
    • Della Pietra S, Della Pietra V, Lafferty J (2002) Duality and auxiliary functions for Bregman distances. Technical report, Technical Report CMU-CS-01-109, School of Computer Science, Carnegie Mellon University, 2001.
  • 6
    • 0035789644 scopus 로고    scopus 로고
    • Dhillon I (2001) Co-clustering documents and words using bipartite spectral graph partitioning. In: Proceedings of the seventh ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, NY, USA, pp 269-274.
  • 7
    • 32344445248 scopus 로고    scopus 로고
    • Dhillon I, Guan Y, Kulis B (2005) A fast kernel-based multilevel algorithm for graph clustering. In: Proceedings of the eleventh ACM SIGKDD international conference on knowledge discovery in data mining. ACM, New York, NY, USA, pp 629-634.
  • 8
    • 77956655040 scopus 로고    scopus 로고
    • Dhillon I, Guan Y, Kulis B (2005) A unified view of kernel k-means, spectral clustering and graph cuts. The University of Texas at Austin, Department of Computer Sciences, Technical Report TR-04.
  • 9
    • 77952375075 scopus 로고    scopus 로고
    • Dhillon I, Mallela S, Modha D (2003) Information-theoretic co-clustering. In: Proceedings of the ninth ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, NY, USA, pp 89-98.
  • 10
    • 78149301227 scopus 로고    scopus 로고
    • Ding C, He X, Zha H, Gu M, Simon H (2001) A min-max cut algorithm for graph partitioning and data clustering. In: Proceedings IEEE international conference on data mining, 2001, ICDM 2001, pp 107-114.
  • 11
    • 84948182065 scopus 로고    scopus 로고
    • El-Yaniv R, Souroujon O (2001) Iterative double clustering for unsupervised and semi-supervised learning. In: EMCL'01: Proceedings of the 12th European conference on machine learning. Springer, London, UK, pp 121-132. ISBN: 3-540-42536-5.
  • 12
    • 32344447271 scopus 로고    scopus 로고
    • Gao B, Liu T, Zheng X, Cheng Q, Ma W (2005) Consistent bipartite graph co-partitioning for star-structured high-order heterogeneous data co-clustering. In: Proceedings of the eleventh ACM SIGKDD international conference on knowledge discovery in data mining. ACM, New York, NY, USA, pp 41-50.
  • 14
    • 77956678940 scopus 로고    scopus 로고
    • Hendrickson B, Leland R (1995) A multilevel algorithm for partitioning graphs. In: Supercomputing '95: proceedings of the 1995 ACM/IEEE conference on supercomputing (CDROM). ACM, New York, NY, USA, p 28.
  • 15
    • 85026972772 scopus 로고    scopus 로고
    • Hofmann T (1999) Probabilistic latent semantic indexing. In: Proceedings of the 22nd annual international ACM SIGIR conference on research and development in information retrieval. ACM, New York, NY, USA, pp 50-57.
  • 16
    • 84862271600 scopus 로고    scopus 로고
    • Hofmann T, Puzicha J (1999), Latent class models for collaborative filtering. In: IJCAI '99: proceedings of the sixteenth international joint conference on artificial intelligence. Morgan Kaufmann, San Francisco, CA, USA, pp 688-693.
  • 17
    • 0032131147 scopus 로고    scopus 로고
    • A fast and high quality multilevel scheme for partitioning irregular graphs
    • Karypis G, Kumar V (1999) A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J Sci Comput 20(1): 359.
    • (1999) SIAM J Sci Comput , vol.20 , Issue.1 , pp. 359
    • Karypis, G.1    Kumar, V.2
  • 18
    • 84990479742 scopus 로고
    • An efficient heuristic procedure for partitioning graphs
    • Kernighan B, Lin S (1970) An efficient heuristic procedure for partitioning graphs. Bell Syst Tech J 49(2): 291-307.
    • (1970) Bell Syst Tech J , vol.49 , Issue.2 , pp. 291-307
    • Kernighan, B.1    Lin, S.2
  • 19
    • 77956709283 scopus 로고    scopus 로고
    • Lang K (1995) Newsweeder: learning to filter netnews. In: Proceedings of the twelfth international conference on machine learning, pp 331-339.
  • 20
    • 84898964201 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • Lee DD, Seung HS (2001) Algorithms for non-negative matrix factorization. Adv Neural Inf Process Syst 13: 556-562.
    • (2001) Adv Neural Inf Process Syst , vol.13 , pp. 556-562
    • Lee, D.D.1    Seung, H.S.2
  • 21
    • 32344435747 scopus 로고    scopus 로고
    • Li T (2005) A general model for clustering binary data. In: Proceedings of the eleventh ACM SIGKDD international conference on knowledge discovery in data mining. ACM, New York, NY, USA, pp 188-197.
  • 22
    • 49749120972 scopus 로고    scopus 로고
    • Long B, Binghamton S, Wu X, Zhang Z, Yu P (2007) Community learning by graph approximation. In: Proceedings of the 2007 seventh IEEE international conference on data mining. IEEE Computer Society, Washington, DC, USA, pp 232-241.
  • 23
    • 33749541707 scopus 로고    scopus 로고
    • Long B, Wu X, Zhang Z, Yu P (2006) Unsupervised learning on k-partite graphs. In: Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, NY, USA, pp 317-326.
  • 24
    • 32344445368 scopus 로고    scopus 로고
    • Long B, Zhang Z, Yu P (2005) Co-clustering by block value decomposition. In: Proceedings of the eleventh ACM SIGKDD international conference on knowledge discovery in data mining. ACM, New York, NY, USA, pp 635-640.
  • 25
    • 34250765347 scopus 로고    scopus 로고
    • Long B, Zhang Z, Wu X, Yu P (2006) Spectral clustering for multi-type relational data. In: Proceedings of the 23rd international conference on machine learning. ACM, New York, NY, USA, pp 585-592.
  • 26
    • 77956653158 scopus 로고    scopus 로고
    • Neville J, Adler M, Jensen D (2003) Clustering relational data using attribute and link information. In: Proceedings of the IJCAI text mining and link analysis workshop.
  • 27
    • 84899013108 scopus 로고    scopus 로고
    • On spectral clustering: analysis and an algorithm
    • Ng A, Jordan M, Weiss Y (2002) On spectral clustering: analysis and an algorithm. Adv Neural Inf Process Syst 2: 849-856.
    • (2002) Adv Neural Inf Process Syst , vol.2 , pp. 849-856
    • Ng, A.1    Jordan, M.2    Weiss, Y.3
  • 28
    • 1942452250 scopus 로고    scopus 로고
    • Salakhutdinov R, Roweis S (2003) Adaptive overrelaxed bound optimization methods. In: Machine learning-international workshop then conference, vol 20, p 664.
  • 29
    • 77956680241 scopus 로고    scopus 로고
    • Shental N, Zomet A, Hertz T, Weiss Y (2003) Pairwise clustering and graphical models. Adv Neural Inf Process Syst 16.
  • 30
  • 31
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles-a knowledge reuse framework for combining multiple partitions
    • Strehl A, Ghosh J (2003) Cluster ensembles-a knowledge reuse framework for combining multiple partitions. J Mach Learn Res 3: 583-617.
    • (2003) J Mach Learn Res , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 32
    • 77956683154 scopus 로고    scopus 로고
    • Tishby N, Pereira FC, Bialek W (1999) The information bottleneck method. In: Proceedings of the 37th annual allerton conference on communication, control and computing, pp 368-377.
  • 33
    • 77956655691 scopus 로고    scopus 로고
    • van Dongen SM (2000) Graph clustering by flow simulation. PhD thesis, University of Utrecht.
  • 34
    • 1542347775 scopus 로고    scopus 로고
    • Wang J, Zeng H, Chen Z, Lu H, Tao L, Ma W (2003) ReCoM: reinforcement clustering of multi-type interrelated data objects. In: Proceedings of the 26th annual international ACM SIGIR conference on research and development in informaion retrieval. ACM, New York, NY, USA, pp 274-281.
  • 36
    • 0344551898 scopus 로고    scopus 로고
    • Yu SX, Shi J (2003) Multiclass spectral clustering. In: ICCV '03: Proceedings of the ninth IEEE international conference on computer vision. IEEE Computer Society, Washington, DC, USA, p 313.
  • 37
    • 26944503672 scopus 로고    scopus 로고
    • Zeng H-J, Chen Z, Ma W-Y (2002) A unified framework for clustering heterogeneous web objects. In: WISE'02: Proceedings of the 3rd international conference on web information systems engineering. IEEE Computer Society, Washington, DC, USA, pp 161-172. ISBN: 0-7695-1766-8.
  • 38
    • 0035751898 scopus 로고    scopus 로고
    • Zha H, He X, Ding C, Simon H, Gu M (2001) Bipartite graph partitioning and data clustering. In: Proceedings of the tenth international conference on information and knowledge management. ACM, New York, NY, USA, pp 25-32.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.