메뉴 건너뛰기




Volumn 25, Issue 4, 2010, Pages 492-505

The MM alternative to EM

Author keywords

Inequalities; Iterative majorization; Maximum likelihood; Penalization

Indexed keywords


EID: 77956665039     PISSN: 08834237     EISSN: None     Source Type: Journal    
DOI: 10.1214/08-STS264     Document Type: Article
Times cited : (94)

References (63)
  • 4
    • 11944251241 scopus 로고    scopus 로고
    • Log-concave probability and its applications
    • BERGSTROM, T. C. and BAGNOLI, M. (2005). Log-concave probability and its applications. Econom. Theory 26 445-469.
    • (2005) Econom. Theory , vol.26 , pp. 445-469
    • Bergstrom, T.C.1    Bagnoli, M.2
  • 5
    • 0000572498 scopus 로고
    • Fitting longitudinal reduced-rank regression models by alternating least squares
    • BIJLEVELD, C. C. J. H. and DE LEEUW, J. (1991). Fitting longitudinal reduced-rank regression models by alternating least squares. Psychometrika 56 433-447.
    • (1991) Psychometrika , vol.56 , pp. 433-447
    • Bijleveld, C.C.J.H.1    De Leeuw, J.2
  • 8
    • 0037877567 scopus 로고
    • Monotonicity of quadratic approximation algorithms
    • BOHNING, D. and LINDSAY, B. G. (1988). Monotonicity of quadratic approximation algorithms. Ann. Inst. Statist. Math. 40 641-663.
    • (1988) Ann. Inst. Statist. Math. , vol.40 , pp. 641-663
    • Bohning, D.1    Lindsay, B.G.2
  • 11
    • 0002558783 scopus 로고
    • On the convergence of the EM algorithm
    • BOYLES, R. A. (1983). On the convergence of the EM algorithm. J. Roy. Statist. Soc. Ser. B 45 47-50.
    • (1983) J. Roy. Statist. Soc. Ser. B , vol.45 , pp. 47-50
    • Boyles, R.A.1
  • 12
    • 0039305819 scopus 로고
    • Applications of convex analysis to multidimensional scaling
    • (J. R. Barra, F. Brodeau, G. Romie and B. Van Cutsem, eds.). North-Holland, Amsterdam
    • DE LEEUW, J. (1977). Applications of convex analysis to multidimensional scaling. In Recent Developments in Statistics (J. R. Barra, F. Brodeau, G. Romie and B. Van Cutsem, eds.) 133-145. North-Holland, Amsterdam.
    • (1977) Recent Developments in Statistics , pp. 133-145
    • De Leeuw, J.1
  • 13
    • 0002403935 scopus 로고
    • Block relaxation algorithms in statistics.
    • (H.-H. Bock,W. Lenski and M. M. Richter, eds.). Springer, Berlin
    • DE LEEUW, J. (1994). Block relaxation algorithms in statistics. In Information Systems and Data Analysis (H.-H. Bock,W. Lenski and M. M. Richter, eds.). Springer, Berlin.
    • (1994) Information Systems and Data Analysis
    • De Leeuw, J.1
  • 14
    • 0002810509 scopus 로고
    • Convergence of correction matrix algorithms for multidimensional scaling.
    • (J. C. Lingoes, E. Roskam and I. Borg, eds.). Mathesis Press, Ann Arbor, MI
    • DE LEEUW, J. and HEISER, W. J. (1977). Convergence of correction matrix algorithms for multidimensional scaling. In Geometric Representations of Relational Data (J. C. Lingoes, E. Roskam and I. Borg, eds.). Mathesis Press, Ann Arbor, MI.
    • (1977) Geometric Representations of Relational Data
    • De Leeuw, J.1    Heiser, W.J.2
  • 16
    • 61849107039 scopus 로고    scopus 로고
    • Sharp quadratic majorization in one dimension
    • DE LEEUW, J. and LANGE, K. (2009). Sharp quadratic majorization in one dimension. Comput. Statist. Data Anal. 53 2471-2484.
    • (2009) Comput. Statist. Data Anal. , vol.53
    • De Leeuw, J.1    Lange, K.2
  • 17
    • 0029267626 scopus 로고
    • A modified expectation maximization algorithm for penalized likelihood estimation in emission tomography
    • DE PIERRO, A. R. (1995). A modified expectation maximization algorithm for penalized likelihood estimation in emission tomography. IEEE Trans. Med. Imaging 14 132-137.
    • (1995) IEEE Trans. Med. Imaging , vol.14 , pp. 132-137
    • De Pierro, A.R.1
  • 18
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm (with discussion)
    • DEMPSTER, A. P., LAIRD, N. M. and RUBIN, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm (with discussion). J. Roy. Statist. Soc. Ser. B 39 1-38.
    • (1977) J. Roy. Statist. Soc. Ser. B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 21
    • 84879575355 scopus 로고    scopus 로고
    • Nonlinear support vector machines through iterative majorization and I-splines
    • (H. J. Lenz and R. Decker, eds.). Springer, Berlin
    • GROENEN, P. J. F., NALBANTOV, G. and BIOCH, J. C. (2006). Nonlinear support vector machines through iterative majorization and I-splines. Studies in Classification, Data Analysis and Knowledge Organization (H. J. Lenz and R. Decker, eds.) 149-161. Springer, Berlin.
    • (2006) Studies in Classification, Data Analysis and Knowledge Organization , pp. 149-161
    • Groenen, P.J.F.1    Nalbantov, G.2    Bioch, J.C.3
  • 23
    • 38249033167 scopus 로고
    • Correspondence analysis with least absolute residuals
    • HEISER, W. J. (1987). Correspondence analysis with least absolute residuals. Comput. Statist. Data Anal. 5 337-356.
    • (1987) Comput. Statist. Data Anal. , vol.5 , pp. 337-356
    • Heiser, W.J.1
  • 24
    • 0002108743 scopus 로고
    • Convergent computing by iterative majorization: theory and applications in multidimensional data analysis.
    • (W. J. Krzanowski, ed.). Clarendon Press, Oxford
    • HEISER, W. J. (1995). Convergent computing by iterative majorization: theory and applications in multidimensional data analysis. In Recent Advances in Descriptive Multivariate Analysis (W. J. Krzanowski, ed.). Clarendon Press, Oxford.
    • (1995) Recent Advances in Descriptive Multivariate Analysis
    • Heiser, W.J.1
  • 26
    • 1342280631 scopus 로고    scopus 로고
    • MM algorithms for generalized Bradley-Terry models
    • HUNTER, D. R. (2004). MM algorithms for generalized Bradley-Terry models. Ann. Statist. 32 384-406.
    • (2004) Ann. Statist. , vol.32 , pp. 384-406
    • Hunter, D.R.1
  • 27
    • 23044517556 scopus 로고    scopus 로고
    • Quantile regression via an MM algorithm
    • HUNTER, D. R. and LANGE, K. (2000). Quantile regression via an MM algorithm. J. Comput. Graph. Statist. 9 60-77.
    • (2000) J. Comput. Graph. Statist. , vol.9 , pp. 60-77
    • Hunter, D.R.1    Lange, K.2
  • 28
    • 6444245816 scopus 로고    scopus 로고
    • Computing estimates in the proportional odds model
    • HUNTER, D. R. and LANGE, K. (2002). Computing estimates in the proportional odds model. Ann. Inst. Statist. Math. 54 155-168.
    • (2002) Ann. Inst. Statist. Math , vol.54 , pp. 155-168
    • Hunter, D.R.1    Lange, K.2
  • 29
    • 1342332031 scopus 로고    scopus 로고
    • A tutorial on MM algorithms
    • HUNTER, D. R. and LANGE, K. (2004). A tutorial on MM algorithms. Amer. Statist. 58 30-37.
    • (2004) Amer. Statist. , vol.58 , pp. 30-37
    • Hunter, D.R.1    Lange, K.2
  • 30
    • 26444617168 scopus 로고    scopus 로고
    • Variable selection using MM algorithms
    • HUNTER, D. R. and LI, R. (2005). Variable selection using MM algorithms. Ann. Statist. 33 1617-1642.
    • (2005) Ann. Statist. , vol.33 , pp. 1617-1642
    • Hunter, D.R.1    Li, R.2
  • 31
    • 0009568899 scopus 로고    scopus 로고
    • Quasi-Newton acceleration of the EM algorithm
    • JAMSHIDIAN, M. and JENNRICH, R. I. (1997). Quasi-Newton acceleration of the EM algorithm. J. Roy. Statist. Soc. Ser. B 59 569-587.
    • (1997) J. Roy. Statist. Soc. Ser. B , vol.59 , pp. 569-587
  • 32
    • 0008596328 scopus 로고
    • A curious likelihood identity for the multivariate t -distribution
    • KENT, J. T., TYLER, D. E. and VARDI, Y. (1994). A curious likelihood identity for the multivariate t -distribution. Comm. Statist. Simulation Comput. 23 441-453.
    • (1994) Comm. Statist. Simulation Comput. , vol.23 , pp. 441-453
    • Kent, J.T.1    Tyler, D.E.2    Vardi, Y.3
  • 33
    • 0037191703 scopus 로고    scopus 로고
    • Setting up alternating least squares and iterative majorization algorithms for solving various matrix optimization problems
    • KIERS, H. A. L. (2002). Setting up alternating least squares and iterative majorization algorithms for solving various matrix optimization problems. Comput. Statist. Data Anal. 41 157-170.
    • (2002) Comput. Statist. Data Anal. , vol.41 , pp. 157-170
    • Kiers, H.A.L.1
  • 34
    • 21144468049 scopus 로고
    • Minimization of a class of matrix trace functions by means of refined majorization
    • KIERS, H. A. L. and TEN BERGE, J. M. F. (1992). Minimization of a class of matrix trace functions by means of refined majorization. Psychometrika 57 371-382.
    • (1992) Psychometrika , vol.57 , pp. 371-382
    • Kiers, H.A.L.1    Ten Berge, J.M.F.2
  • 35
    • 1342344191 scopus 로고
    • An adaptive barrier method for convex programming
    • LANGE, K. (1994). An adaptive barrier method for convex programming. Methods Appl. Anal. 1 392-402.
    • (1994) Methods Appl. Anal. , vol.1 , pp. 392-402
    • Lange, K.1
  • 36
    • 0000808747 scopus 로고
    • A gradient algorithm locally equivalent to the EM algorithm
    • LANGE, K. (1995a). A gradient algorithm locally equivalent to the EM algorithm. J. Roy. Statist. Soc. Ser. B 57 425-437.
    • (1995) J. Roy. Statist. Soc. Ser. B , vol.57 , pp. 425-437
    • Lange, K.1
  • 37
    • 0002414768 scopus 로고
    • A quasi-Newton acceleration of the EM algorithm
    • LANGE, K. (1995b). A quasi-Newton acceleration of the EM algorithm. Statist. Sinica 5 1-18.
    • (1995) Statist. Sinica , vol.5 , pp. 1-18
    • Lange, K.1
  • 38
    • 1342322973 scopus 로고    scopus 로고
    • Springer, New York
    • LANGE, K. (2004). Optimization. Springer, New York.
    • (2004) Optimization
    • Lange, K.1
  • 39
    • 0029394375 scopus 로고
    • Globally convergent algorithms for maximum a posteriori transmission tomography
    • LANGE, K. and FESSLER, J. A. (1994). Globally convergent algorithms for maximum a posteriori transmission tomography. IEEE Trans. Image Process. 4 1430-1438.
    • (1994) IEEE Trans. Image Process. , vol.4 , pp. 1430-1438
    • Lange, K.1    Fessler, J.A.2
  • 40
    • 77950023906 scopus 로고    scopus 로고
    • Optimization transfer using surrogate objective functions (with discussion)
    • LANGE, K., HUNTER, D. R. and YANG, I. (2000). Optimization transfer using surrogate objective functions (with discussion). J. Comput. Graph. Statist. 9 1-20.
    • (2000) J. Comput. Graph. Statist. , vol.9 , pp. 1-20
    • Lange, K.1    Hunter, D.R.2    Yang, I.3
  • 41
  • 42
    • 53549084093 scopus 로고    scopus 로고
    • An MM algorithm for multicategory vertex discriminant analysis
    • LANGE, K. andWU, T. T. (2008). An MM algorithm for multicategory vertex discriminant analysis. J. Comput. Graph. Statist. 17 1-18.
    • (2008) J. Comput. Graph. Statist. , vol.17 , pp. 1-18
    • Lange, K.1    Wu, T.T.2
  • 43
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • LEE, D. D. and SEUNG, H. S. (1999). Learning the parts of objects by non-negative matrix factorization. Nature 401 788-791.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 44
    • 84898964201 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • LEE, D. D. and SEUNG, H. S. (2001). Algorithms for non-negative matrix factorization. Adv. Neural Inform. Process. Syst. 13 556-562.
    • (2001) Adv. Neural Inform. Process. Syst , vol.13 , pp. 556-562
    • Lee, D.D.1    Seung, H.S.2
  • 45
    • 79959851094 scopus 로고    scopus 로고
    • Use of MM algorithm for regularization of parametric images in dynamic PET
    • (M. Senda, Y. Kimura, P. Herscovitch and Y. Kimura, eds.). Academic Press, New York
    • LIAO, W. H., HUANG, S. C., LANGE, K. and BERGSNEIDER, M. (2002). Use of MM algorithm for regularization of parametric images in dynamic PET. In Brain Imaging Using PET (M. Senda, Y. Kimura, P. Herscovitch and Y. Kimura, eds.). Academic Press, New York.
    • (2002) Brain Imaging Using PET
    • Liao, W.H.1    Huang, S.C.2    Lange, K.3    Bergsneider, M.4
  • 49
    • 0001232538 scopus 로고
    • A fast improvement to the EMalgorithm on its own terms
    • MEILIJSON, I. (1989). A fast improvement to the EMalgorithm on its own terms. J. Roy. Statist. Soc. B 51 127-138.
    • (1989) J. Roy. Statist. Soc. B , vol.51 , pp. 127-138
    • Meilijson, I.1
  • 50
    • 84864615423 scopus 로고
    • Using EM to obtain asymptotic variance-covariance matrices: The SEM algorithm
    • MENG, X. L. and RUBIN, D. B. (1991). Using EM to obtain asymptotic variance-covariance matrices: The SEM algorithm. J. Amer. Statist. Assoc. 86 899-909.
    • (1991) J. Amer. Statist. Assoc. , vol.86 , pp. 899-909
    • Meng, X.L.1    Rubin, D.B.2
  • 51
    • 18244387717 scopus 로고    scopus 로고
    • The EM algorithm-an old folk-song sung to a fast new tune
    • MENG, X. L. and VAN DYK, D. (1997). The EM algorithm-an old folk-song sung to a fast new tune. J. Roy. Statist. Soc. Ser. B 59 511-567.
    • (1997) J. Roy. Statist. Soc. Ser. B , vol.59 , pp. 511-567
    • Meng, X.L.1    Van Dyk, D.2
  • 54
    • 33646682646 scopus 로고    scopus 로고
    • Nonnegative matrix factorization for spectral data analysis
    • PAUCA, V. P., PIPER, J. and PLEMMONS, R. J. (2006). Nonnegative matrix factorization for spectral data analysis. Linear Algebra Appl. 416 29-47.
    • (2006) Linear Algebra Appl , vol.416 , pp. 29-47
    • Pauca, V.P.1    Piper, J.2    Plemmons, R.J.3
  • 56
    • 1342280632 scopus 로고    scopus 로고
    • Genomewide motif identification using a dictionary model
    • SABATTI, C. and LANGE, K. (2002). Genomewide motif identification using a dictionary model. Proceedings IEEE 90 1803-1810.
    • (2002) Proceedings IEEE , vol.90 , pp. 1803-1810
    • Sabatti, C.1    Lange, K.2
  • 59
    • 34250297158 scopus 로고
    • Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features
    • TAKANE, Y., YOUNG, F. W. and DE LEEUW, J. (1977). Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features. Psychometrika 42 7-67.
    • (1977) Psychometrika , vol.42 , pp. 7-67
    • Takane, Y.1    Young, F.W.2    De Leeuw, J.3
  • 60
    • 26844582271 scopus 로고    scopus 로고
    • Parameter convergence for EM and MM algorithms
    • VAIDA, F. (2005). Parameter convergence for EM and MM algorithms. Statist. Sinica 15 831-840.
    • (2005) Statist. Sinica , vol.15 , pp. 831-840
    • Vaida, F.1
  • 62
    • 43749120067 scopus 로고    scopus 로고
    • Simple and globally convergent methods for accelerating the convergence of any EM algorithm
    • VARADHAN, R. and ROLAND, C. (2008). Simple and globally convergent methods for accelerating the convergence of any EM algorithm. Scand. J. Statist. 35 335-353.
    • (2008) Scand. J. Statist. , vol.35 , pp. 335-353
    • Varadhan, R.1    Roland, C.2
  • 63
    • 0002210265 scopus 로고
    • On the convergence properties of the EM algorithm
    • WU, C. F. J. (1983). On the convergence properties of the EM algorithm. Ann. Statist. 11 95-103.
    • (1983) Ann. Statist. , vol.11 , pp. 95-103
    • Wu, C.F.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.