-
1
-
-
7444220645
-
-
10.1126/science.1102896
-
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004). 10.1126/science.1102896
-
(2004)
Science
, vol.306
, pp. 666
-
-
Novoselov, K.S.1
Geim, A.K.2
Morozov, S.V.3
Jiang, D.4
Zhang, Y.5
Dubonos, S.V.6
Grigorieva, I.V.7
Firsov, A.A.8
-
2
-
-
77956659188
-
-
A. Geim, APS News 19 (1), 4 (2010).
-
(2010)
APS News
, vol.19
, pp. 4
-
-
Geim, A.1
-
3
-
-
77949441632
-
-
10.1021/nl904286r
-
M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, Nano Lett. 10, 751 (2010). 10.1021/nl904286r
-
(2010)
Nano Lett.
, vol.10
, pp. 751
-
-
Dresselhaus, M.S.1
Jorio, A.2
Hofmann, M.3
Dresselhaus, G.4
Saito, R.5
-
5
-
-
59949098337
-
-
10.1103/RevModPhys.81.109
-
A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009). 10.1103/RevModPhys.81.109
-
(2009)
Rev. Mod. Phys.
, vol.81
, pp. 109
-
-
Castro Neto, A.H.1
Guinea, F.2
Peres, N.M.R.3
Novoselov, K.S.4
Geim, A.K.5
-
8
-
-
67649414628
-
-
10.1103/PhysRevB.79.195425
-
P. A. Khomyakov, G. Giovannetti, P. C. Rusu, G. Brocks, J. van den Brink, and P. J. Kelly, Phys. Rev. B 79, 195425 (2009). 10.1103/PhysRevB.79.195425
-
(2009)
Phys. Rev. B
, vol.79
, pp. 195425
-
-
Khomyakov, P.A.1
Giovannetti, G.2
Rusu, P.C.3
Brocks, G.4
Van Den Brink, J.5
Kelly, P.J.6
-
10
-
-
70149097985
-
-
10.1088/0022-3727/42/11/112003
-
E. Widenkvist, D. W. Boukhvalov, S. Rubino, S. Akhtar, J. Lu, R. A. Quinlan, M. I. Katsnelson, K. Leifer, H. Grennberg, and U. Jansson, J. Phys. D 42, 112003 (2009). 10.1088/0022-3727/42/11/112003
-
(2009)
J. Phys. D
, vol.42
, pp. 112003
-
-
Widenkvist, E.1
Boukhvalov, D.W.2
Rubino, S.3
Akhtar, S.4
Lu, J.5
Quinlan, R.A.6
Katsnelson, M.I.7
Leifer, K.8
Grennberg, H.9
Jansson, U.10
-
11
-
-
0242371973
-
-
Oxford University Press, Oxford, New York
-
T. Enoki, M. Suzuki, and M. Endo, Graphite Intercalation Compounds and Applications (Oxford University Press, Oxford, New York, 2003).
-
(2003)
Graphite Intercalation Compounds and Applications
-
-
Enoki, T.1
Suzuki, M.2
Endo, M.3
-
12
-
-
3242718844
-
-
10.1103/PhysRevLett.92.246401
-
M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004). 10.1103/PhysRevLett.92.246401
-
(2004)
Phys. Rev. Lett.
, vol.92
, pp. 246401
-
-
Dion, M.1
Rydberg, H.2
Schröder, E.3
Langreth, D.C.4
Lundqvist, B.I.5
-
13
-
-
34648834821
-
-
10.1103/PhysRevB.76.125112
-
T. Thonhauser, V. R. Cooper, S. Li, A. Puzder, P. Hyldgaard, and D. C. Langreth, Phys. Rev. B 76, 125112 (2007). 10.1103/PhysRevB.76.125112
-
(2007)
Phys. Rev. B
, vol.76
, pp. 125112
-
-
Thonhauser, T.1
Cooper, V.R.2
Li, S.3
Puzder, A.4
Hyldgaard, P.5
Langreth, D.C.6
-
14
-
-
36149028236
-
-
10.1103/PhysRev.100.544
-
Y. Baskin and L. Meyer, Phys. Rev. 100, 544 (1955). 10.1103/PhysRev.100. 544
-
(1955)
Phys. Rev.
, vol.100
, pp. 544
-
-
Baskin, Y.1
Meyer, L.2
-
16
-
-
70349568754
-
-
10.1088/0953-8984/21/39/395502
-
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, J. Phys.: Condens. Matter 21, 395502 (2009). 10.1088/0953-8984/21/39/395502
-
(2009)
J. Phys.: Condens. Matter
, vol.21
, pp. 395502
-
-
Giannozzi, P.1
Baroni, S.2
Bonini, N.3
Calandra, M.4
Car, R.5
Cavazzoni, C.6
Ceresoli, D.7
Chiarotti, G.L.8
Cococcioni, M.9
Dabo, I.10
Dal Corso, A.11
De Gironcoli, S.12
Fabris, S.13
Fratesi, G.14
Gebauer, R.15
Gerstmann, U.16
Gougoussis, C.17
Kokalj, A.18
Lazzeri, M.19
Martin-Samos, L.20
Marzari, N.21
Mauri, F.22
Mazzarello, R.23
Paolini, S.24
Pasquarello, A.25
Paulatto, L.26
Sbraccia, C.27
Scandolo, S.28
Sclauzero, G.29
Seitsonen, A.P.30
Smogunov, A.31
Umari, P.32
Wentzcovitch, R.M.33
more..
-
17
-
-
77956666832
-
-
The pseudopotentials used in this work were taken from QUANTUM-ESPRESSO web page
-
The pseudopotentials used in this work were taken from QUANTUM-ESPRESSO web page http://www.quantum-espresso.org
-
-
-
-
25
-
-
38849107422
-
-
10.1103/PhysRevB.77.045136
-
J. Harl and G. Kresse, Phys. Rev. B 77, 045136 (2008). 10.1103/PhysRevB.77.045136
-
(2008)
Phys. Rev. B
, vol.77
, pp. 045136
-
-
Harl, J.1
Kresse, G.2
-
26
-
-
65449177249
-
-
10.1088/0953-8984/21/8/084203
-
D. C. Langreth, B. I. Lundqvist, S. D. Chakarova-Käck, V. R. Cooper, M. Dion, P. Hyldgaard, A. Kelkkannen, J. Kleis, Lingzhu Kong, Shen Li, P. G. Moses, E. Murray, A. Puzder, H. Rydberg, E. Schröder, and T. Thonhauser, J. Phys.: Condens. Matter 21, 084203 (2009). 10.1088/0953-8984/21/8/084203
-
(2009)
J. Phys.: Condens. Matter
, vol.21
, pp. 084203
-
-
Langreth, D.C.1
Lundqvist, B.I.2
Chakarova-Käck, S.D.3
Cooper, V.R.4
Dion, M.5
Hyldgaard, P.6
Kelkkannen, A.7
Kleis, J.8
Kong, L.9
Li, S.10
Moses, P.G.11
Murray, E.12
Puzder, A.13
Rydberg, H.14
Schröder, E.15
Thonhauser, T.16
-
27
-
-
85029400214
-
-
10.1103/PhysRevLett.80.890
-
Y. Zhang and W. Yang, Phys. Rev. Lett. 80, 890 (1998). 10.1103/PhysRevLett.80.890
-
(1998)
Phys. Rev. Lett.
, vol.80
, pp. 890
-
-
Zhang, Y.1
Yang, W.2
-
29
-
-
77955076310
-
-
10.1103/PhysRevB.81.115428
-
S. Tongay, J. Hwang, D. B. Tanner, H. K. Pal, D. Maslov, and A. F. Hebard, Phys. Rev. B 81, 115428 (2010). 10.1103/PhysRevB.81.115428
-
(2010)
Phys. Rev. B
, vol.81
, pp. 115428
-
-
Tongay, S.1
Hwang, J.2
Tanner, D.B.3
Pal, H.K.4
Maslov, D.5
Hebard, A.F.6
-
30
-
-
77956663380
-
-
(private communication).
-
I. V. Grigorieva (private communication).
-
-
-
Grigorieva, I.V.1
-
31
-
-
77956704475
-
-
We calculate the charge transfer following the procedure used in Ref.. This procedure implies that the charge q can be estimated by integrating plane-averaged density difference Δn (z) as follows: q=- |e| z0 dzΔn (z), where z0 corresponds to an interface point so that Δn ( z0 ) =0.
-
We calculate the charge transfer following the procedure used in Ref.. This procedure implies that the charge q can be estimated by integrating plane-averaged density difference Δ n (z) as follows: q = - | e | z 0 d z Δ n (z), where z 0 corresponds to an interface point so that Δ n (z 0) = 0.
-
-
-
-
34
-
-
0037085825
-
-
10.1103/PhysRevB.65.125404
-
L. A. Girifalco and M. Hodak, Phys. Rev. B 65, 125404 (2002). 10.1103/PhysRevB.65.125404
-
(2002)
Phys. Rev. B
, vol.65
, pp. 125404
-
-
Girifalco, L.A.1
Hodak, M.2
-
35
-
-
33751552371
-
-
10.1103/PhysRevB.74.205434
-
Y. J. Dappe, M. A. Basanta, F. Flores, and J. Ortega, Phys. Rev. B 74, 205434 (2006). 10.1103/PhysRevB.74.205434
-
(2006)
Phys. Rev. B
, vol.74
, pp. 205434
-
-
Dappe, Y.J.1
Basanta, M.A.2
Flores, F.3
Ortega, J.4
-
37
-
-
33645835183
-
-
10.1103/PhysRevLett.96.146107
-
S. D. Chakarova-Käck, E. Schröder, B. I. Lundqvist, and D. C. Langreth, Phys. Rev. Lett. 96, 146107 (2006). 10.1103/PhysRevLett.96.146107
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 146107
-
-
Chakarova-Käck, S.D.1
Schröder, E.2
Lundqvist, B.I.3
Langreth, D.C.4
-
38
-
-
0032540059
-
-
10.1016/S0009-2614(97)01466-8
-
L. X. Benedict, N. G. Chopra, M. L. Cohen, A. Zettl, S. G. Louie, and V. H. Crespi, Chem. Phys. Lett. 286, 490 (1998). 10.1016/S0009-2614(97)01466-8
-
(1998)
Chem. Phys. Lett.
, vol.286
, pp. 490
-
-
Benedict, L.X.1
Chopra, N.G.2
Cohen, M.L.3
Zettl, A.4
Louie, S.G.5
Crespi, V.H.6
-
40
-
-
35448973258
-
-
10.1103/PhysRevB.76.155425
-
E. Ziambaras, J. Kleis, E. Schröder, and P. Hyldgaard, Phys. Rev. B 76, 155425 (2007). 10.1103/PhysRevB.76.155425
-
(2007)
Phys. Rev. B
, vol.76
, pp. 155425
-
-
Ziambaras, E.1
Kleis, J.2
Schröder, E.3
Hyldgaard, P.4
-
41
-
-
52049113441
-
-
10.1021/nl801457b
-
J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G. Craighead, and P. L. McEuen, Nano Lett. 8, 2458 (2008). 10.1021/nl801457b
-
(2008)
Nano Lett.
, vol.8
, pp. 2458
-
-
Bunch, J.S.1
Verbridge, S.S.2
Alden, J.S.3
Van Der Zande, A.M.4
Parpia, J.M.5
Craighead, H.G.6
McEuen, P.L.7
-
43
-
-
77956686520
-
-
We calculate the absorption energy of intercalated graphite as follows: Δ Eabs =-Δ E form C48 +Δ E form C48 X4, where the first term corresponds to the energy of the pure graphite formation from a number of noninteracting graphene sheets, and the seconds term is the energy of the intercalated graphite formation. In turn, the binding energy of intercalated graphite we estimate as: Δ Ebind =Δ E form C48 X4 -2Δ E form C24 X2, where second term is the binding energy in graphene-halogen system. X2 = F2, Cl2, Br2, and I2.
-
We calculate the absorption energy of intercalated graphite as follows: Δ E a b s = - Δ E f o r m C 48 + Δ E f o r m C 48 X 4, where the first term corresponds to the energy of the pure graphite formation from a number of noninteracting graphene sheets, and the seconds term is the energy of the intercalated graphite formation. In turn, the binding energy of intercalated graphite we estimate as: Δ E b i n d = Δ E f o r m C 48 X 4 - 2 Δ E f o r m C 24 X 2, where second term is the binding energy in graphene-halogen system. X 2 = F 2, Cl 2, Br 2, and I 2.
-
-
-
|