메뉴 건너뛰기




Volumn 82, Issue 3, 2010, Pages

Adsorption of diatomic halogen molecules on graphene: A van der Waals density functional study

Author keywords

[No Author keywords available]

Indexed keywords


EID: 77956659838     PISSN: 10980121     EISSN: 1550235X     Source Type: Journal    
DOI: 10.1103/PhysRevB.82.035427     Document Type: Article
Times cited : (69)

References (43)
  • 2
    • 77956659188 scopus 로고    scopus 로고
    • A. Geim, APS News 19 (1), 4 (2010).
    • (2010) APS News , vol.19 , pp. 4
    • Geim, A.1
  • 9
    • 67650088362 scopus 로고    scopus 로고
    • 10.1103/PhysRevB.79.245416
    • H. Johll, H. C. Kang, and E. S. Tok, Phys. Rev. B 79, 245416 (2009). 10.1103/PhysRevB.79.245416
    • (2009) Phys. Rev. B , vol.79 , pp. 245416
    • Johll, H.1    Kang, H.C.2    Tok, E.S.3
  • 14
    • 36149028236 scopus 로고
    • 10.1103/PhysRev.100.544
    • Y. Baskin and L. Meyer, Phys. Rev. 100, 544 (1955). 10.1103/PhysRev.100. 544
    • (1955) Phys. Rev. , vol.100 , pp. 544
    • Baskin, Y.1    Meyer, L.2
  • 17
    • 77956666832 scopus 로고    scopus 로고
    • The pseudopotentials used in this work were taken from QUANTUM-ESPRESSO web page
    • The pseudopotentials used in this work were taken from QUANTUM-ESPRESSO web page http://www.quantum-espresso.org
  • 20
  • 25
    • 38849107422 scopus 로고    scopus 로고
    • 10.1103/PhysRevB.77.045136
    • J. Harl and G. Kresse, Phys. Rev. B 77, 045136 (2008). 10.1103/PhysRevB.77.045136
    • (2008) Phys. Rev. B , vol.77 , pp. 045136
    • Harl, J.1    Kresse, G.2
  • 27
    • 85029400214 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.80.890
    • Y. Zhang and W. Yang, Phys. Rev. Lett. 80, 890 (1998). 10.1103/PhysRevLett.80.890
    • (1998) Phys. Rev. Lett. , vol.80 , pp. 890
    • Zhang, Y.1    Yang, W.2
  • 30
    • 77956663380 scopus 로고    scopus 로고
    • (private communication).
    • I. V. Grigorieva (private communication).
    • Grigorieva, I.V.1
  • 31
    • 77956704475 scopus 로고    scopus 로고
    • We calculate the charge transfer following the procedure used in Ref.. This procedure implies that the charge q can be estimated by integrating plane-averaged density difference Δn (z) as follows: q=- |e| z0 dzΔn (z), where z0 corresponds to an interface point so that Δn ( z0 ) =0.
    • We calculate the charge transfer following the procedure used in Ref.. This procedure implies that the charge q can be estimated by integrating plane-averaged density difference Δ n (z) as follows: q = - | e | z 0 d z Δ n (z), where z 0 corresponds to an interface point so that Δ n (z 0) = 0.
  • 34
    • 0037085825 scopus 로고    scopus 로고
    • 10.1103/PhysRevB.65.125404
    • L. A. Girifalco and M. Hodak, Phys. Rev. B 65, 125404 (2002). 10.1103/PhysRevB.65.125404
    • (2002) Phys. Rev. B , vol.65 , pp. 125404
    • Girifalco, L.A.1    Hodak, M.2
  • 43
    • 77956686520 scopus 로고    scopus 로고
    • We calculate the absorption energy of intercalated graphite as follows: Δ Eabs =-Δ E form C48 +Δ E form C48 X4, where the first term corresponds to the energy of the pure graphite formation from a number of noninteracting graphene sheets, and the seconds term is the energy of the intercalated graphite formation. In turn, the binding energy of intercalated graphite we estimate as: Δ Ebind =Δ E form C48 X4 -2Δ E form C24 X2, where second term is the binding energy in graphene-halogen system. X2 = F2, Cl2, Br2, and I2.
    • We calculate the absorption energy of intercalated graphite as follows: Δ E a b s = - Δ E f o r m C 48 + Δ E f o r m C 48 X 4, where the first term corresponds to the energy of the pure graphite formation from a number of noninteracting graphene sheets, and the seconds term is the energy of the intercalated graphite formation. In turn, the binding energy of intercalated graphite we estimate as: Δ E b i n d = Δ E f o r m C 48 X 4 - 2 Δ E f o r m C 24 X 2, where second term is the binding energy in graphene-halogen system. X 2 = F 2, Cl 2, Br 2, and I 2.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.