-
1
-
-
0041384807
-
-
Academic Press, New York
-
R. A. Adams. Sobolov Spaces. Academic Press, New York, 1975.
-
(1975)
Sobolov Spaces
-
-
Adams, R.A.1
-
2
-
-
67349095304
-
Spectral method
-
P. G. Ciarlet and L. L. Lions, editors, (Part 2). North-Holland
-
C. Bernardi and Y. Maday. Spectral method. In P. G. Ciarlet and L. L. Lions, editors, Handbook of Numerical Analysis, V. 5 (Part 2). North-Holland, 1997.
-
(1997)
Handbook of Numerical Analysis
, vol.5
-
-
Bernardi, C.1
Maday, Y.2
-
3
-
-
13444255982
-
Wave propagation using bases for bandlimited functions
-
G. Beylkin and K. Sandberg. Wave propagation using bases for bandlimited functions. Wave Motion, 41(3):263-291, 2005.
-
(2005)
Wave Motion
, vol.41
, Issue.3
, pp. 263-291
-
-
Beylkin, G.1
Sandberg, K.2
-
4
-
-
80052224651
-
On the theory of spheroidal wave functions of order zero
-
53:931-944 = Indagationes Math., 1950.
-
C. J. Bouwkamp. On the theory of spheroidal wave functions of order zero. Nederl. Akad. Wetensch., Proc., 53:931-944 = Indagationes Math. 12, 326-339 (1950), 1950.
-
(1950)
Nederl. Akad. Wetensch., Proc.
, vol.12
, pp. 326-339
-
-
Bouwkamp, C.J.1
-
5
-
-
0347480334
-
Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions
-
John P. Boyd. Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Appl. Comput. Harmon. Anal., 15(2):168-176, 2003.
-
(2003)
Appl. Comput. Harmon. Anal.
, vol.15
, Issue.2
, pp. 168-176
-
-
John, P.B.1
-
6
-
-
0041520606
-
Large mode number eigenvalues of the prolate spheroidal differential equation
-
John P. Boyd. Large mode number eigenvalues of the prolate spheroidal differential equation. Appl. Math. Comput., 145(2-3):881-886, 2003.
-
(2003)
Appl. Math. Comput.
, vol.145
, Issue.2-3
, pp. 881-886
-
-
John, P.B.1
-
7
-
-
4544383537
-
Prolate spheroidal wavefunctions as an alternative to Chebyshev and Legendre polynomials for spectral element and pseudospectral algorithms
-
John P. Boyd. Prolate spheroidal wavefunctions as an alternative to Chebyshev and Legendre polynomials for spectral element and pseudospectral algorithms. J. Comput. Phys., 199(2):688-716, 2004.
-
(2004)
J. Comput. Phys.
, vol.199
, Issue.2
, pp. 688-716
-
-
John, P.B.1
-
8
-
-
17644389543
-
Algorithm 840: Computation of grid points, quadrature weights and derivatives for spectral element methods using prolate spheroidal wave functions-prolate elements
-
John P. Boyd. Algorithm 840: Computation of grid points, quadrature weights and derivatives for spectral element methods using prolate spheroidal wave functions-prolate elements. ACM Trans. Math. Software, 31(1):149-165, 2005.
-
(2005)
ACM Trans. Math. Software
, vol.31
, Issue.1
, pp. 149-165
-
-
John, P.B.1
-
10
-
-
33745222937
-
Spectral methods based on prolate spheroidal wave functions for hyperbolic PDEs
-
(electronic)
-
Q.-Y. Chen, D. Gottlieb, and J. S. Hesthaven. Spectral methods based on prolate spheroidal wave functions for hyperbolic PDEs. SIAM J. Numer. Anal., 43(5):1912-1933 (electronic), 2005.
-
(2005)
SIAM J. Numer. Anal.
, vol.43
, Issue.5
, pp. 1912-1933
-
-
Chen, Q.-Y.1
Gottlieb, D.2
Hesthaven, J.S.3
-
11
-
-
11244352492
-
Dorota Da̧browska. Recovering signals from inner products involving prolate spheroidals in the presence of jitter
-
(electronic)
-
Dorota Da̧browska. Recovering signals from inner products involving prolate spheroidals in the presence of jitter. Math. Comp., 74(249):279-290 (electronic), 2005.
-
(2005)
Math. Comp.
, vol.74
, Issue.249
, pp. 279-290
-
-
-
13
-
-
40249111875
-
A fast algorithm for the calculation of the roots of special functions
-
(electronic)
-
Andreas Glaser, Xiangtao Liu, and Vladimir Rokhlin. A fast algorithm for the calculation of the roots of special functions. SIAM J. Sci. Comput., 29(4):1420-1438 (electronic), 2007.
-
(2007)
SIAM J. Sci. Comput.
, vol.29
, Issue.4
, pp. 1420-1438
-
-
Glaser, A.1
Liu, X.2
Rokhlin, V.3
-
14
-
-
3543090402
-
Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces
-
Ben-yu Guo and Li-Lian Wang. Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces. J. Approx. Theory, 128(1):1-41, 2004.
-
(2004)
J. Approx. Theory
, vol.128
, Issue.1
, pp. 1-41
-
-
Guo, B.-Y.1
Wang, L.-L.2
-
16
-
-
41349106962
-
New efficient methods of computing the prolate spheriodal wave functions and their corresponding eigenvalues
-
Abderrazek Karoui and Tahar Moumni. New efficient methods of computing the prolate spheriodal wave functions and their corresponding eigenvalues. Appl. Comput. Harmon. Anal., 24:269-289, 2008.
-
(2008)
Appl. Comput. Harmon. Anal.
, vol.24
, pp. 269-289
-
-
Karoui, A.1
Moumni, T.2
-
17
-
-
29444461006
-
Pseudospectral method based on prolate spheroidal wave functions for frequency-domain electromagnetic simulations
-
N. Kovvali, W. Lin, and L. Carin. Pseudospectral method based on prolate spheroidal wave functions for frequency-domain electromagnetic simulations. IEEE Trans. Antennas and Propagation, 53:3990-4000, 2005.
-
(2005)
IEEE Trans. Antennas and Propagation
, vol.53
, pp. 3990-4000
-
-
Kovvali, N.1
Lin, W.2
Carin, L.3
-
18
-
-
33947233872
-
Rapid prolate pseudospectral differentiation and interpolation with the fast multipole method
-
(electronic)
-
Narayan Kovvali, Wenbin Lin, Zhiqin Zhao, Luise Couchman, and Lawrence Carin. Rapid prolate pseudospectral differentiation and interpolation with the fast multipole method. SIAM J. Sci. Comput., 28(2):485-497 (electronic), 2006.
-
(2006)
SIAM J. Sci. Comput.
, vol.28
, Issue.2
, pp. 485-497
-
-
Kovvali, N.1
Lin, W.2
Zhao, Z.3
Couchman, L.4
Carin, L.5
-
19
-
-
84944487979
-
Prolate spheroidal wave functions, Fourier analysis and uncertainty. III. The dimension of the space of essentially time- and band-limited signals
-
H. J. Landau and H. O. Pollak. Prolate spheroidal wave functions, Fourier analysis and uncertainty. III. The dimension of the space of essentially time- and band-limited signals. Bell System Tech. J., 41:1295-1336, 1962.
-
(1962)
Bell System Tech. J.
, vol.41
, pp. 1295-1336
-
-
Landau, H.J.1
Pollak, H.O.2
-
20
-
-
0003519536
-
Mathieusche Funktionen und Spḧaroidfunktionen mit Anwendungen auf physikalische und technische Probleme
-
Berlin
-
J. Meixner and F. W. Scḧafke. Mathieusche Funktionen und Spḧaroidfunktionen mit Anwendungen auf physikalische und technische Probleme. Springer, Berlin, 1954.
-
(1954)
Springer
-
-
Meixner, J.1
Scḧafke, F.W.2
-
21
-
-
2442585496
-
Prolate spheroidal wave functions, an introduction to the Slepian series and its properties
-
Ian C. Moore and Michael Cada. Prolate spheroidal wave functions, an introduction to the Slepian series and its properties. Appl. Comput. Harmon. Anal., 16(3):208-230, 2004.
-
(2004)
Appl. Comput. Harmon. Anal.
, vol.16
, Issue.3
, pp. 208-230
-
-
Ian, C.M.1
Cada, M.2
-
22
-
-
33751002629
-
Approximate formulae for certain prolate spheroidal wave functions valid for large values of both order and band-limit
-
Vladimir Rokhlin and Hong Xiao. Approximate formulae for certain prolate spheroidal wave functions valid for large values of both order and band-limit. Appl. Comput. Harmon. Anal., 22(1):105-123, 2007.
-
(2007)
Appl. Comput. Harmon. Anal.
, vol.22
, Issue.1
, pp. 105-123
-
-
Rokhlin, V.1
Xiao, H.2
-
23
-
-
0000567049
-
Efficient spectral-Galerkin method I. Direct solvers for second- and fourth-order equations using Legendre polynomials
-
Jie Shen. Efficient spectral-Galerkin method I. Direct solvers for second- and fourth-order equations using Legendre polynomials. SIAM J. Sci. Comput., 15:1489-1505, 1994.
-
(1994)
SIAM J. Sci. Comput.
, vol.15
, pp. 1489-1505
-
-
Shen, J.1
-
24
-
-
33750834019
-
Approximation of bandlimited functions
-
Yoel Shkolnisky, Mark Tygert, and Vladimir Rokhlin. Approximation of bandlimited functions. Appl. Comput. Harmon. Anal., 21(3):413-420, 2006.
-
(2006)
Appl. Comput. Harmon. Anal.
, vol.21
, Issue.3
, pp. 413-420
-
-
Shkolnisky, Y.1
Tygert, M.2
Rokhlin, V.3
-
25
-
-
84939751170
-
Prolate spheroidal wave functions, Fourier analysis and uncertainty. I
-
D. Slepian and H. O. Pollak. Prolate spheroidal wave functions, Fourier analysis and uncertainty. I. Bell System Tech. J., 40:43-63, 1961.
-
(1961)
Bell System Tech. J.
, vol.40
, pp. 43-63
-
-
Slepian, D.1
Pollak, H.O.2
-
26
-
-
84916160159
-
Prolate spheroidal wave functions, Fourier analysis and uncertainity. IV. Extensions to many dimensions; generalized prolate spheroidal functions
-
David Slepian. Prolate spheroidal wave functions, Fourier analysis and uncertainity. IV. Extensions to many dimensions; generalized prolate spheroidal functions. Bell System Tech. J., 43:3009-3057, 1964.
-
(1964)
Bell System Tech. J.
, vol.43
, pp. 3009-3057
-
-
Slepian, D.1
-
27
-
-
33846701057
-
A generalization of prolate spheroidal functions with more uniform resolution to the triangle
-
Mark A. Taylor and Beth A. Wingate. A generalization of prolate spheroidal functions with more uniform resolution to the triangle. J. Engrg. Math., 56(3):221-235, 2006.
-
(2006)
J. Engrg. Math.
, vol.56
, Issue.3
, pp. 221-235
-
-
Mark, A.T.1
Beth, A.W.2
-
28
-
-
0003278399
-
Infinite-dimensional dynamical systems in mechanics and physics, volume 68 of Applied Mathematical Sciences
-
New York
-
Roger Temam. Infinite-dimensional dynamical systems in mechanics and physics, volume 68 of Applied Mathematical Sciences. Springer-Verlag, New York, 1988.
-
(1988)
Springer-Verlag
-
-
Temam, R.1
-
29
-
-
27844440802
-
A new friendly method of computing prolate spheroidal wave functions and wavelets
-
G. Walter and T. Soleski. A new friendly method of computing prolate spheroidal wave functions and wavelets. Appl. Comput. Harmon. Anal., 19(3):432-443, 2005.
-
(2005)
Appl. Comput. Harmon. Anal.
, vol.19
, Issue.3
, pp. 432-443
-
-
Walter, G.1
Soleski, T.2
-
30
-
-
13844276742
-
Prolate spheroidal wavelets: Translation, convolution, and differentiation made easy
-
Gilbert G. Walter. Prolate spheroidal wavelets: Translation, convolution, and differentiation made easy. J. Fourier Anal. Appl., 11(1):73-84, 2005.
-
(2005)
J. Fourier Anal. Appl.
, vol.11
, Issue.1
, pp. 73-84
-
-
Gilbert, G.W.1
-
31
-
-
2442430339
-
Wavelets based on prolate spheroidal wave functions
-
Gilbert G. Walter and Xiaoping Shen. Wavelets based on prolate spheroidal wave functions. J. Fourier Anal. Appl., 10(1):1-26, 2004.
-
(2004)
J. Fourier Anal. Appl.
, vol.10
, Issue.1
, pp. 1-26
-
-
Gilbert, G.W.1
Shen, X.2
-
32
-
-
2442611122
-
-
Ph.D. Thesis, Yale University
-
H. Xiao. Prolate spheroidal wave functions, quadrature, interpolation, and asymptotic formulae. Ph.D. Thesis, Yale University, 2001.
-
(2001)
Prolate spheroidal wave functions, quadrature, interpolation, and asymptotic formulae
-
-
Xiao, H.1
-
33
-
-
0035420586
-
-
Inverse Problems. Special issue to celebrate Pierre Sabatier's 65th birthday (Montpellier, 2000)
-
H. Xiao, V. Rokhlin, and N. Yarvin. Prolate spheroidal wavefunctions, quadrature and interpolation. Inverse Problems, 17(4):805-838, 2001. Special issue to celebrate Pierre Sabatier's 65th birthday (Montpellier, 2000).
-
(2001)
Prolate spheroidal wavefunctions, quadrature and interpolation
, vol.17
, Issue.4
, pp. 805-838
-
-
Xiao, H.1
Rokhlin, V.2
Yarvin, N.3
-
34
-
-
67650827571
-
A generalization of the prolate spheroidal wave functions
-
(electronic)
-
Ahmed I. Zayed. A generalization of the prolate spheroidal wave functions. Proc. Amer. Math. Soc., 135(7):2193-2203 (electronic), 2007.
-
(2007)
Proc. Amer. Math. Soc.
, vol.135
, Issue.7
, pp. 2193-2203
-
-
Ahmed, I.Z.1
|