-
1
-
-
41349091489
-
Norms and exclusions
-
Bauer F.L., and Fike C.T. Norms and exclusions. Numer. Math. 2 (1960) 123-144
-
(1960)
Numer. Math.
, vol.2
, pp. 123-144
-
-
Bauer, F.L.1
Fike, C.T.2
-
2
-
-
0002237285
-
Irregular sampling and frames
-
Chui C.K. (Ed), Academic Press, New York
-
Benedetto J. Irregular sampling and frames. In: Chui C.K. (Ed). Wavelets: A Tutorial in Theory and Applications (1992), Academic Press, New York 445-507
-
(1992)
Wavelets: A Tutorial in Theory and Applications
, pp. 445-507
-
-
Benedetto, J.1
-
3
-
-
3943060186
-
On generalized Gaussian quadrature for exponentials and their applications
-
Beylkin G., and Monzon L. On generalized Gaussian quadrature for exponentials and their applications. Appl. Comput. Harmon. Anal. 12 (2002) 332-373
-
(2002)
Appl. Comput. Harmon. Anal.
, vol.12
, pp. 332-373
-
-
Beylkin, G.1
Monzon, L.2
-
4
-
-
13444255982
-
Wave propagation using bases for band-limited functions
-
Beylkin G., and Sandberg K. Wave propagation using bases for band-limited functions. Wave Motion 41 (2005) 263-291
-
(2005)
Wave Motion
, vol.41
, pp. 263-291
-
-
Beylkin, G.1
Sandberg, K.2
-
5
-
-
4544383537
-
Prolate spheroidal wave functions as an alternative to Chebyshev and Legendre polynomials for spectral element and pseudo-spectral algorithms
-
Boyd J.P. Prolate spheroidal wave functions as an alternative to Chebyshev and Legendre polynomials for spectral element and pseudo-spectral algorithms. J. Comput. Phys. 199 (2004) 688-716
-
(2004)
J. Comput. Phys.
, vol.199
, pp. 688-716
-
-
Boyd, J.P.1
-
6
-
-
0347480334
-
Approximation of an analytic function on a finite real interval by a band-limited function and conjectures on properties of prolate spheroidal functions
-
Boyd J.P. Approximation of an analytic function on a finite real interval by a band-limited function and conjectures on properties of prolate spheroidal functions. Appl. Comput. Harmon. Anal. 15 (2003) 168-176
-
(2003)
Appl. Comput. Harmon. Anal.
, vol.15
, pp. 168-176
-
-
Boyd, J.P.1
-
7
-
-
84950242370
-
-
English edition translated from the German original, Wiley Interscience Publishers, New York
-
Courant R., and Hilbert D. Methods of Mathematical Physics, vol. 1. English edition translated from the German original (1989), Wiley Interscience Publishers, New York
-
(1989)
Methods of Mathematical Physics, vol. 1
-
-
Courant, R.1
Hilbert, D.2
-
10
-
-
0142260921
-
Sampling theory approach to prolate spheroidal wave functions
-
Khare K., and George N. Sampling theory approach to prolate spheroidal wave functions. J. Phys. A Math. Gen. 36 (2003) 10011-10021
-
(2003)
J. Phys. A Math. Gen.
, vol.36
, pp. 10011-10021
-
-
Khare, K.1
George, N.2
-
11
-
-
84857887285
-
Prolate spheroidal wave functions, Fourier analysis and uncertainty-II
-
Landau H.J., and Pollak H.O. Prolate spheroidal wave functions, Fourier analysis and uncertainty-II. Bell System Tech. J. 40 (1961) 65-84
-
(1961)
Bell System Tech. J.
, vol.40
, pp. 65-84
-
-
Landau, H.J.1
Pollak, H.O.2
-
12
-
-
84944487979
-
Prolate spheroidal wave functions, Fourier analysis and uncertainty-III. The dimension of space of essentially time- and band-limited signals
-
Landau H.J., and Pollak H.O. Prolate spheroidal wave functions, Fourier analysis and uncertainty-III. The dimension of space of essentially time- and band-limited signals. Bell System Tech. J. 41 (1962) 1295-1336
-
(1962)
Bell System Tech. J.
, vol.41
, pp. 1295-1336
-
-
Landau, H.J.1
Pollak, H.O.2
-
13
-
-
2442585496
-
Prolate spheroidal wave functions, an introduction to the Slepian series and its properties
-
Moore I.C., and Cada M. Prolate spheroidal wave functions, an introduction to the Slepian series and its properties. Appl. Comput. Harmon. Anal. 16 (2004) 208-230
-
(2004)
Appl. Comput. Harmon. Anal.
, vol.16
, pp. 208-230
-
-
Moore, I.C.1
Cada, M.2
-
14
-
-
2442430339
-
Wavelets based on prolate spheroidal wave functions
-
Walter G., and Shen X. Wavelets based on prolate spheroidal wave functions. J. Fourier Anal. Appl. 10 (2004) 1-25
-
(2004)
J. Fourier Anal. Appl.
, vol.10
, pp. 1-25
-
-
Walter, G.1
Shen, X.2
-
15
-
-
13844276742
-
Prolate spheroidal wavelets: Translation, convolution and differentiation made easy
-
Walter G. Prolate spheroidal wavelets: Translation, convolution and differentiation made easy. J. Fourier Anal. Appl. 11 (2005) 73-84
-
(2005)
J. Fourier Anal. Appl.
, vol.11
, pp. 73-84
-
-
Walter, G.1
-
16
-
-
27844440802
-
A new friendly method of computing prolate spheroidal wave functions and wavelets
-
Walter G., and Soleski T. A new friendly method of computing prolate spheroidal wave functions and wavelets. Appl. Comput. Harmon. Anal. 19 (2005) 432-443
-
(2005)
Appl. Comput. Harmon. Anal.
, vol.19
, pp. 432-443
-
-
Walter, G.1
Soleski, T.2
-
17
-
-
84939751170
-
Prolate spheroidal wave functions, Fourier analysis and uncertainty I
-
Slepian D., and Pollak H.O. Prolate spheroidal wave functions, Fourier analysis and uncertainty I. Bell System Tech. J. 40 (1961) 43-64
-
(1961)
Bell System Tech. J.
, vol.40
, pp. 43-64
-
-
Slepian, D.1
Pollak, H.O.2
-
18
-
-
0020786063
-
Some comments on Fourier analysis, uncertainty and modeling
-
Slepian D. Some comments on Fourier analysis, uncertainty and modeling. SIAM Rev. 25 (1983) 379-393
-
(1983)
SIAM Rev.
, vol.25
, pp. 379-393
-
-
Slepian, D.1
-
19
-
-
0035420586
-
Prolate spheroidal wave functions, quadrature and interpolation
-
Xiao H., Rokhlin V., and Yarvin N. Prolate spheroidal wave functions, quadrature and interpolation. Inverse Problems 17 (2001) 805-838
-
(2001)
Inverse Problems
, vol.17
, pp. 805-838
-
-
Xiao, H.1
Rokhlin, V.2
Yarvin, N.3
-
20
-
-
0742323822
-
High-frequency asymptotic expansions for certain prolate spheroidal wave functions
-
Xiao H., and Rokhlin V. High-frequency asymptotic expansions for certain prolate spheroidal wave functions. J. Fourier Anal. Appl. 9 (2003) 575-596
-
(2003)
J. Fourier Anal. Appl.
, vol.9
, pp. 575-596
-
-
Xiao, H.1
Rokhlin, V.2
-
21
-
-
33751002629
-
Approximate formulae for certain prolate spheroidal wave functions valid for large values of both order and band-limit
-
Rokhlin V., and Xiao H. Approximate formulae for certain prolate spheroidal wave functions valid for large values of both order and band-limit. Appl. Comput. Harmon. Anal. 22 (2007) 105-123
-
(2007)
Appl. Comput. Harmon. Anal.
, vol.22
, pp. 105-123
-
-
Rokhlin, V.1
Xiao, H.2
|