-
4
-
-
0001405180
-
Logical analysis of numerical data
-
Boros, E., Hammer, P.L., Ibaraki, T. and Kogan, A. Logical analysis of numerical data. Math. Programming, 79:163-190, 1997.
-
(1997)
Math. Programming
, vol.79
, pp. 163-190
-
-
Boros, E.1
Hammer, P.L.2
Ibaraki, T.3
Kogan, A.4
-
5
-
-
0032596610
-
A simple, fast, and effective rule learner
-
Cohen, W.W. and Singer, Y. A simple, fast, and effective rule learner. In Proc. of the 16th National Conf. on Artificial Intelligence, pp. 335-342, 1999.
-
(1999)
Proc. of the 16th National Conf. on Artificial Intelligence
, pp. 335-342
-
-
Cohen, W.W.1
Singer, Y.2
-
6
-
-
34249753618
-
Support-vector networks
-
Cortes, C. and Vapnik, V. Support-vector networks. Machine Learning, 20:273-297, 1995.
-
(1995)
Machine Learning
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
7
-
-
0036161257
-
Linear programming boosting via column generation
-
Demiriz, A., Bennett, K.P. and Shawe-Taylor, J. Linear programming boosting via column generation. Machine Learning, 46:225-254, 2002.
-
(2002)
Machine Learning
, vol.46
, pp. 225-254
-
-
Demiriz, A.1
Bennett, K.P.2
Shawe-Taylor, J.3
-
8
-
-
77956529646
-
An improved branch- and-bound method for maximum monomial agreement
-
URL
-
Eckstein, J. and Goldberg, N. An improved branch- and-bound method for maximum monomial agreement. In Optimization for Machine Learning, NIPS Workshop, 2008. URL http://opt2008.kyb.tuebingen.mpg.de/eckst?in.pdf.
-
(2008)
Optimization for Machine Learning, NIPS Workshop
-
-
Eckstein, J.1
Goldberg, N.2
-
9
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Freund, Y. and Schapire, R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. of Computer and Systems Sciences, 55(1):119-139, 1997.
-
(1997)
J. of Computer and Systems Sciences
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
14
-
-
0033311945
-
Classification on proximity data with LP-machines
-
Graepel, T., Herbrich, R., Schölkopf, B., Smola, A., Bartlett, P., Müller, K-R., Obermayer, K. and Williamson, R. Classification on proximity data with LP-machines. Int. Conf. of Artificial Neural Networks, pp. 304-309, 1999.
-
(1999)
Int. Conf. of Artificial Neural Networks
, pp. 304-309
-
-
Graepel, T.1
Herbrich, R.2
Schölkopf, B.3
Smola, A.4
Bartlett, P.5
Müller, K.-R.6
Obermayer, K.7
Williamson, R.8
-
16
-
-
0029255662
-
Robust trainability of single neurons
-
Höffgen, K-U., Simon, H.U. and Horn, K.S. Van. Robust trainability of single neurons. J. of Computer and Systems Sciences, 50:114-125, 1995.
-
(1995)
J. of Computer and Systems Sciences
, vol.50
, pp. 114-125
-
-
Höffgen, K.-U.1
Simon, H.U.2
Horn, K.S.V.3
-
17
-
-
0001553979
-
Toward efficient agnostic learning
-
Kearns, M.J., Schapire, R.E. and Sellie, L.M. Toward efficient agnostic learning. Machine Learning, 17(2- 3):115-141, 1994.
-
(1994)
Machine Learning
, vol.17
, Issue.2-3
, pp. 115-141
-
-
Kearns, M.J.1
Schapire, R.E.2
Sellie, L.M.3
-
18
-
-
30344453380
-
Selected topics in column generation
-
Lübbecke, M.E. and Desrosiers, J. Selected topics in column generation. Operations Research, 53(6): 1007-1023, 2005.
-
(2005)
Operations Research
, vol.53
, Issue.6
, pp. 1007-1023
-
-
Lübbecke, M.E.1
Desrosiers, J.2
-
19
-
-
0342502195
-
Soft margins for AdaBoost
-
Rätsch, G., Onoda, T. and Müller, K-R. Soft margins for AdaBoost. Machine Learning, 42:287-320, 2001.
-
(2001)
Machine Learning
, vol.42
, pp. 287-320
-
-
Rätsch, G.1
Onoda, T.2
Müller, K.-R.3
-
20
-
-
0032166068
-
Structural risk minimization over data-dependent hierarchies
-
Shawe-Taylor, J., Bartlett, P.L., Williamson, R.C. and Anthony, M. Structural risk minimization over data-dependent hierarchies. IEEE Trans, on Information Theory, 44:1926-1940, 1998.
-
(1998)
IEEE Trans, on Information Theory
, vol.44
, pp. 1926-1940
-
-
Shawe-Taylor, J.1
Bartlett, P.L.2
Williamson, R.C.3
Anthony, M.4
-
22
-
-
15844406872
-
A compression approach to support vector model selection
-
Von Luxburg, U., Bousquet, O. and Schölkopf, B. A compression approach to support vector model selection. J. of Machine Learning Research, 5:293- 323, 2004.
-
(2004)
J. of Machine Learning Research
, vol.5
, pp. 293-323
-
-
Von Luxburg, U.1
Bousquet, O.2
Schölkopf, B.3
-
23
-
-
84890520049
-
Use of the zero norm with linear models and kernel methods
-
Weston, J., Elisseeff, A., Schölkopf, B. and Tipping, M. Use of the zero norm with linear models and kernel methods. J. of Machine Learning Research, 3:1439-1461, 2003.
-
(2003)
J. of Machine Learning Research
, vol.3
, pp. 1439-1461
-
-
Weston, J.1
Elisseeff, A.2
Schölkopf, B.3
Tipping, M.4
|