-
1
-
-
0004200984
-
-
For a review, ed. S. T. Pantelides Gordon and Breach, New York
-
For a review, Deep Centers in Semiconductors, ed. S. T. Pantelides (Gordon and Breach, New York, 1986).
-
(1986)
Deep Centers in Semiconductors
-
-
-
7
-
-
0036600803
-
-
N. Teraguchi, A. Suzuki, Y. Nanishi, Y. K. Zhou, M. Hashimoto, and H. Asahi: Solid State Commun. 122 (2002) 651.
-
(2002)
Solid State Commun.
, vol.122
, pp. 651
-
-
Teraguchi, N.1
Suzuki, A.2
Nanishi, Y.3
Zhou, Y.K.4
Hashimoto, M.5
Asahi, H.6
-
8
-
-
10444248944
-
-
H. Asahi, Y. K. Zhou, M. Hashimoto, M. S. Kim, X. J. Li, S. Emura, and S. Hasegawa: J. Phys.: Condens. Matter 16 (2004) S5555.
-
(2004)
J. Phys.: Condens. Matter.
, vol.16
-
-
Asahi, H.1
Zhou, Y.K.2
Hashimoto, M.3
Kim, M.S.4
Li, X.J.5
Emura, S.6
Hasegawa, S.7
-
9
-
-
18044371838
-
-
S. Dhar, O. Brandt, M. Ramsteiner, V. F. Sapega, and K. H. Ploog: Phys. Rev. Lett. 94 (2005) 037205.
-
(2005)
Phys. Rev. Lett.
, vol.94
, pp. 037205
-
-
Dhar, S.1
Brandt, O.2
Ramsteiner, M.3
Sapega, V.F.4
Ploog, K.H.5
-
10
-
-
33747132123
-
-
S. Dhar, T. Kammermeier, A. Ney, L. Pérez, K. Ploog, A. Melnikov, and A. D. Wieck: Appl. Phys. Lett. 89 (2006) 062503.
-
(2006)
Appl. Phys. Lett.
, vol.89
, pp. 062503
-
-
Dhar, S.1
Kammermeier, T.2
Ney, A.3
Pérez, L.4
Ploog, K.5
Melnikov, A.6
Wieck, A.D.7
-
15
-
-
44649197119
-
-
A. Uedono, C. Shaoqiang, S. Jongwon, K. Ito, H. Nakamori, N. Honda, S. Tomita, K. Akimoto, H. Kudo, and S. Ishibashi: J. Appl. Phys. 103 (2008) 104505.
-
(2008)
J. Appl. Phys.
, vol.103
, pp. 104505
-
-
Uedono, A.1
Shaoqiang, C.2
Jongwon, S.3
Ito, K.4
Nakamori, H.5
Honda, N.6
Tomita, S.7
Akimoto, K.8
Kudo, H.9
Ishibashi, S.10
-
17
-
-
23244460838
-
-
J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais: Phys. Rev. B 46 (1992) 6671.
-
(1992)
Phys. Rev. B.
, vol.46
, pp. 6671
-
-
Perdew, J.P.1
Chevary, J.A.2
Vosko, S.H.3
Jackson, K.A.4
Pederson, M.R.5
Singh, D.J.6
Fiolhais, C.7
-
22
-
-
77956443076
-
-
Note that the occupancy of the defect levels within the band gap and the magnetic moment depend on the number of electrons for the N dangling bonds resonant in the valence bands as shown in Fig. 2 b
-
Note that the occupancy of the defect levels within the band gap and the magnetic moment depend on the number of electrons for the N dangling bonds resonant in the valence bands as shown in Fig. 2 (b).
-
-
-
-
23
-
-
77956424785
-
-
Indeed, in the case of silicon where the defect properties are well identified, large multivacancies, e.g., hexavacancy, have been observed by positron annihilation. In semiconductor device fabrications, thermal annealing enhances diffusion of monovacancies, which can result in the formation of multivacancy. Even though the formation energy of n-vacancy is large, it emerges if energetically favorable than the presence of isolated n monovacancies. Therefore, the comparison should be made for three monovacancies with single trivacancy
-
Indeed, in the case of silicon where the defect properties are well identified, large multivacancies, e.g., hexavacancy, have been observed by positron annihilation. In semiconductor device fabrications, thermal annealing enhances diffusion of monovacancies, which can result in the formation of multivacancy. Even though the formation energy of n-vacancy is large, it emerges if energetically favorable than the presence of isolated n monovacancies. Therefore, the comparison should be made for three monovacancies with single trivacancy.
-
-
-
|