-
3
-
-
0037340654
-
-
Tzlil, S.; Kindt, J. T.; Gelbart, W. M.; Ben-Shaul, A. Biophys. J. 2003, 84, 1616
-
(2003)
Biophys. J.
, vol.84
, pp. 1616
-
-
Tzlil, S.1
Kindt, J.T.2
Gelbart, W.M.3
Ben-Shaul, A.4
-
4
-
-
21244473581
-
-
Purohit, P. K.; Inamdar, M. M.; Grayson, P. D.; Squires, T. M.; Kondev, J.; Phillips, R. Biophys. J. 2005, 88, 851
-
(2005)
Biophys. J.
, vol.88
, pp. 851
-
-
Purohit, P.K.1
Inamdar, M.M.2
Grayson, P.D.3
Squires, T.M.4
Kondev, J.5
Phillips, R.6
-
10
-
-
39149138419
-
-
Baldwin, G. S.; Brooks, N. J.; Robson, R. E.; Wynveen, A.; Goldar, A.; Leikin, S.; Seddon, J. M.; Kornyshev, A. A. J. Phys. Chem. B 2008, 112, 1060
-
(2008)
J. Phys. Chem. B
, vol.112
, pp. 1060
-
-
Baldwin, G.S.1
Brooks, N.J.2
Robson, R.E.3
Wynveen, A.4
Goldar, A.5
Leikin, S.6
Seddon, J.M.7
Kornyshev, A.A.8
-
11
-
-
69449102233
-
-
Danilowicz, C.; Limouse, C.; Hatch, K.; Conover, A.; Coljee, V. W.; Kleckner, N.; Prentiss, M. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 13196
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 13196
-
-
Danilowicz, C.1
Limouse, C.2
Hatch, K.3
Conover, A.4
Coljee, V.W.5
Kleckner, N.6
Prentiss, M.7
-
12
-
-
0000840006
-
-
Frank-Kamenetskii, M. D.; Anshelevich, V. V.; Lukashin, A. V. Sov. Phys. Usp. 1987, 151, 595
-
(1987)
Sov. Phys. Usp.
, vol.151
, pp. 595
-
-
Frank-Kamenetskii, M.D.1
Anshelevich, V.V.2
Lukashin, A.V.3
-
14
-
-
0001944857
-
-
Gelbart, W. M.; Bruinsma, R. F.; Pincus, P. A.; Parsegian, V. A. Phys. Today 2000, 53, 38
-
(2000)
Phys. Today
, vol.53
, pp. 38
-
-
Gelbart, W.M.1
Bruinsma, R.F.2
Pincus, P.A.3
Parsegian, V.A.4
-
15
-
-
0028207587
-
-
Podgornik, R.; Rau, D. C.; Parsegian, V. A. Biophys. J. 1994, 66, 962
-
(1994)
Biophys. J.
, vol.66
, pp. 962
-
-
Podgornik, R.1
Rau, D.C.2
Parsegian, V.A.3
-
16
-
-
0000607886
-
-
Strey, H. H.; Parsegian, V. A.; Podgornik, R. Phys. Rev. E 1999, 59, 999
-
(1999)
Phys. Rev. e
, vol.59
, pp. 999
-
-
Strey, H.H.1
Parsegian, V.A.2
Podgornik, R.3
-
17
-
-
0032104520
-
-
Strey, H. H.; Podgornik, R.; Rau, D. C.; Parsegian, V. A. Curr. Opin. Struct. Biol. 1998, 8, 309
-
(1998)
Curr. Opin. Struct. Biol.
, vol.8
, pp. 309
-
-
Strey, H.H.1
Podgornik, R.2
Rau, D.C.3
Parsegian, V.A.4
-
18
-
-
34548391310
-
-
Kornyshev, A. A.; Lee, D. J.; Leikin, S.; Wynveen, A. Rev. Mod. Phys. 2007, 79, 943
-
(2007)
Rev. Mod. Phys.
, vol.79
, pp. 943
-
-
Kornyshev, A.A.1
Lee, D.J.2
Leikin, S.3
Wynveen, A.4
-
19
-
-
60049095598
-
-
Kandu, M.; Dobnikar, J.; Podgornik, R. Soft Matter 2009, 5, 868
-
(2009)
Soft Matter
, vol.5
, pp. 868
-
-
Kandu, M.1
Dobnikar, J.2
Podgornik, R.3
-
20
-
-
0003724744
-
-
note
-
Since the interaction of a charge with a dielectric boundary (separating media with different dielectric constants) may be described as it were between the charge and its image(s) across the boundary, this interaction is often referred to as an image force (Landau, L. D.; Lifshitz, E. M. Electrodynamics of continuous media; Pergamon Press: Oxford, U.K., 1982). The force is repulsive when the charge is in a medium with higher dielectric constant and attractive when the charge is in a medium with lower dielectric constant. Image forces have two manifestations in the context of DNA-DNA interactions. First, charges located in water at the surface of one molecule repel from the dielectric core of an opposing molecule. Second, polarization of the dielectric core almost doubles the electric field created in water by a charge located at the core surface, as if the field were created by the charge and its image.
-
(1982)
Electrodynamics of Continuous Media
-
-
Landau, L.D.1
Lifshitz, E.M.2
-
22
-
-
56249129385
-
-
RSC, London
-
Hsiao, C.; Tannenbaum, M.; Van Deusen, H.; Hershkovitz, E.; Perng, G.; Tannenbaum, A.; Williams, L. D. In Nucleic Acid Metal Ion Interactions; Hud, N., Ed.; RSC, London, 2008; pp 1 - 35.
-
(2008)
Nucleic Acid Metal Ion Interactions
, pp. 1-35
-
-
Hsiao, C.1
Tannenbaum, M.2
Van Deusen, H.3
Hershkovitz, E.4
Perng, G.5
Tannenbaum, A.6
Williams, L.D.7
Hud, N.8
-
25
-
-
0029978845
-
-
Podgornik, R.; Strey, H. H.; Gawrisch, K.; Rau, D. C.; Rupprecht, A.; Parsegian, V. A. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 4261
-
(1996)
Proc. Natl. Acad. Sci. U.S.A.
, vol.93
, pp. 4261
-
-
Podgornik, R.1
Strey, H.H.2
Gawrisch, K.3
Rau, D.C.4
Rupprecht, A.5
Parsegian, V.A.6
-
27
-
-
0036461952
-
-
Kornyshev, A. A.; Leikin, S.; Malinin, S. V. Eur. Phys. J. E 2002, 7, 83
-
(2002)
Eur. Phys. J. e
, vol.7
, pp. 83
-
-
Kornyshev, A.A.1
Leikin, S.2
Malinin, S.V.3
-
33
-
-
2642527925
-
-
Cherstvy, A. G.; Kornyshev, A. A.; Leikin, S. J. Phys. Chem. B 2004, 108, 6508
-
(2004)
J. Phys. Chem. B
, vol.108
, pp. 6508
-
-
Cherstvy, A.G.1
Kornyshev, A.A.2
Leikin, S.3
-
41
-
-
0001044588
-
-
Strey, H. H.; Parsegian, V. A.; Podgornik, R. Phys. Rev. Lett. 1997, 78, 895
-
(1997)
Phys. Rev. Lett.
, vol.78
, pp. 895
-
-
Strey, H.H.1
Parsegian, V.A.2
Podgornik, R.3
-
43
-
-
55249095348
-
-
Wynveen, A.; Lee, D. J.; Kornyshev, A. A.; Leikin, S. Nucleic Acids Res. 2008, 36, 5540
-
(2008)
Nucleic Acids Res.
, vol.36
, pp. 5540
-
-
Wynveen, A.1
Lee, D.J.2
Kornyshev, A.A.3
Leikin, S.4
-
45
-
-
0026089491
-
-
Bolshoy, A.; McNamara, P.; Harrington, R. E.; Trifonov, E. N. Proc. Natl. Acad. Sci. U.S.A. 1991, 88, 2312
-
(1991)
Proc. Natl. Acad. Sci. U.S.A.
, vol.88
, pp. 2312
-
-
Bolshoy, A.1
McNamara, P.2
Harrington, R.E.3
Trifonov, E.N.4
-
46
-
-
0022477409
-
-
Koo, H. S.; Wu, H. M.; Crothers, D. M. Nature 1986, 320, 501
-
(1986)
Nature
, vol.320
, pp. 501
-
-
Koo, H.S.1
Wu, H.M.2
Crothers, D.M.3
-
47
-
-
0026585152
-
-
note
-
So far, this approximation has been tested and found valid only for random sequences. (43) It is less clear whether the same approximation also applies to genomic DNA, in which long-range correlations in the base pair composition have been reported (Peng, C.-K.; Buldyrev, C. V.; Goldberger, A. L.; Havlin, S.; Sciortino, F.; Simons, M.; Stanley, H. E. Nature 1992, 356, 168). Potential effects of such correlations in genomic sequences on DNA-DNA interactions are, however, likely to be "washed out" by random juxtaposition of different genomic fragments in fibers.
-
(1992)
Nature
, vol.356
, pp. 168
-
-
Peng, C.-K.1
Buldyrev, C.V.2
Goldberger, A.L.3
Havlin, S.4
Sciortino, F.5
Simons, M.6
Stanley, H.E.7
-
48
-
-
85067724164
-
-
Note that roll, tilt, and slide between adjacent base pairs also depend on the sequence. (29, 45) These lead to small bending distortions, but they do not affect the intrinsic coherence length
-
Note that roll, tilt, and slide between adjacent base pairs also depend on the sequence. (29, 45) These lead to small bending distortions, but they do not affect the intrinsic coherence length.
-
-
-
-
49
-
-
85067722447
-
-
Note that each term in eq 5 is a free energy at fixed conformations and separations between the molecules in the aggregate. We refer to these terms as energies to underscore that they do not account for conformational fluctuations of the molecules. For simplicity, eq 5 includes only the energy terms that explicitly depend on the separation and conformation of DNA molecules. Other terms do not have to be explicitly specified in the context of the present theory, but this approach leads to important subtleties in the calculation of derivatives of the aggregate free energy discussed in the Supporting Information
-
Note that each term in eq 5 is a free energy at fixed conformations and separations between the molecules in the aggregate. We refer to these terms as energies to underscore that they do not account for conformational fluctuations of the molecules. For simplicity, eq 5 includes only the energy terms that explicitly depend on the separation and conformation of DNA molecules. Other terms do not have to be explicitly specified in the context of the present theory, but this approach leads to important subtleties in the calculation of derivatives of the aggregate free energy discussed in the Supporting Information.
-
-
-
-
52
-
-
0037180865
-
-
Cherstvy, A. G.; Kornyshev, A. A.; Leikin, S. J. Phys. Chem. B 2002, 106, 13362
-
(2002)
J. Phys. Chem. B
, vol.106
, pp. 13362
-
-
Cherstvy, A.G.1
Kornyshev, A.A.2
Leikin, S.3
-
53
-
-
0029157053
-
-
A variety of theoretical models and computer simulations of counterion-DNA interactions have been reviewed (e.g
-
A variety of theoretical models and computer simulations of counterion-DNA interactions have been reviewed (e.g., Sharp, K. A.; Honig, B. Curr. Opin. Struct. Biol. 1995, 5, 323
-
(1995)
Curr. Opin. Struct. Biol.
, vol.5
, pp. 323
-
-
Sharp, K.A.1
Honig, B.2
-
56
-
-
85067703864
-
-
note
-
Korolev, N.; Lyubartsev, A. P.; Nordenskiöld, L. Adv. Colloid Interface Sci. DOI: 10.1016/j.cis.2009.08.002). However, many of the theoretical predictions are at odds with each other and experiments, which is not surprising given that counterion binding to DNA is strongly affected by the coordination chemistry of the ions, water, and DNA; see, e.g., ref 55. Accurate modeling of such coordination chemistry may require a full quantum mechanical description of electron clouds of all relevant atoms. Furthermore, since counterion binding affects interactions and conformation of DNA in hexagonal aggregates, the converse must also be true; local counterion binding may depend on collective effects concerned with the large scale variations in the DNA interactions and conformation. In other words, modeling of counterion-DNA interactions may require ab initio simulations of millions of interacting atoms over very large time intervals and conformational space, which are still far beyond the reach of the available computational technology.
-
Adv. Colloid Interface Sci.
-
-
Korolev, N.1
Lyubartsev, A.P.2
Nordenskiöld, L.3
-
58
-
-
0026742978
-
-
Berman, H. M.; Olson, W. K.; Beveridge, D. L.; Westbrook, J.; Gelbin, A.; Demeny, T.; Hsieh, S.-H.; Srinivasan, A. R.; Schneider, B. Biophys. J. 1992, 63, 751
-
(1992)
Biophys. J.
, vol.63
, pp. 751
-
-
Berman, H.M.1
Olson, W.K.2
Beveridge, D.L.3
Westbrook, J.4
Gelbin, A.5
Demeny, T.6
Hsieh, S.-H.7
Srinivasan, A.R.8
Schneider, B.9
-
59
-
-
85067726014
-
-
note
-
b. This suggests that intrinsic bending is not important.
-
-
-
-
60
-
-
85067717347
-
-
Over large length scales, we expect that such effects will not matter
-
Over large length scales, we expect that such effects will not matter.
-
-
-
-
62
-
-
0036106380
-
-
Wenner, J. R.; Williams, M. C.; Rouzina, I.; Bloomfield, V. A. Biophys. J. 2002, 82, 3160
-
(2002)
Biophys. J.
, vol.82
, pp. 3160
-
-
Wenner, J.R.1
Williams, M.C.2
Rouzina, I.3
Bloomfield, V.A.4
-
63
-
-
0026796061
-
-
Crothers, D. M.; Drak, J.; Kahn, J. D.; Levene, S. D. Methods Enzymol. 1992, 212, 3
-
(1992)
Methods Enzymol.
, vol.212
, pp. 3
-
-
Crothers, D.M.1
Drak, J.2
Kahn, J.D.3
Levene, S.D.4
-
64
-
-
85067732963
-
-
Note that this model formally allows unrestricted thermal undulations, resulting in nonphysical overlap between the cores of the molecules. Although the probability of such overlap is low, this feature of the model requires some caution in averaging of the electrostatic energy (see the Supporting Information)
-
Note that this model formally allows unrestricted thermal undulations, resulting in nonphysical overlap between the cores of the molecules. Although the probability of such overlap is low, this feature of the model requires some caution in averaging of the electrostatic energy (see the Supporting Information).
-
-
-
-
66
-
-
0001533502
-
-
Rau, D. C.; Lee, B.; Parsegian, V. A. Proc. Natl. Acad. Sci. U.S.A. 1984, 81, 2621
-
(1984)
Proc. Natl. Acad. Sci. U.S.A.
, vol.81
, pp. 2621
-
-
Rau, D.C.1
Lee, B.2
Parsegian, V.A.3
-
69
-
-
45849137851
-
-
Todd, B. A.; Parsegian, V. A.; Shirahata, A.; Thomas, T. J.; Rau, D. C. Biophys. J. 2008, 94, 4775
-
(2008)
Biophys. J.
, vol.94
, pp. 4775
-
-
Todd, B.A.1
Parsegian, V.A.2
Shirahata, A.3
Thomas, T.J.4
Rau, D.C.5
-
71
-
-
85067712066
-
-
B as the deflection length
-
B as the deflection length.
-
-
-
-
72
-
-
4243281502
-
-
Harreis, H. M.; Kornyshev, A. A.; Likos, C. N.; Löwen, H.; Sutmann, G. Phys. Rev. Lett. 2002, 89 018303
-
(2002)
Phys. Rev. Lett.
, vol.89
, pp. 018303
-
-
Harreis, H.M.1
Kornyshev, A.A.2
Likos, C.N.3
Löwen, H.4
Sutmann, G.5
-
73
-
-
18044380679
-
-
Wynveen, A.; Lee, D. J.; Kornyshev, A. A. Eur. Phys. J. E 2005, 16, 303
-
(2005)
Eur. Phys. J. e
, vol.16
, pp. 303
-
-
Wynveen, A.1
Lee, D.J.2
Kornyshev, A.A.3
-
74
-
-
85067736169
-
-
We neglect the weak attraction resulting from correlated thermal fluctuations of the helical phase of neighbor molecules, (35, 70) which is akin to and should be considered together with the zero-frequency van der Waals attraction
-
We neglect the weak attraction resulting from correlated thermal fluctuations of the helical phase of neighbor molecules, (35, 70) which is akin to and should be considered together with the zero-frequency van der Waals attraction.
-
-
-
-
75
-
-
85067720985
-
-
2 as adjustable parameters may result in overfitting the data
-
2 as adjustable parameters may result in overfitting the data.
-
-
-
-
77
-
-
0022429605
-
-
Wemmer, D. E.; Srivenugopal, K. S.; Reid, B. R.; Morris, D. R. J. Mol. Biol. 1985, 185, 457
-
(1985)
J. Mol. Biol.
, vol.185
, pp. 457
-
-
Wemmer, D.E.1
Srivenugopal, K.S.2
Reid, B.R.3
Morris, D.R.4
-
80
-
-
28844489539
-
-
Kornyshev, A. A.; Lee, D. J.; Leikin, S.; Wynveen, A.; Zimmerman, S. B. Phys. Rev. Lett. 2005, 95, 148102
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 148102
-
-
Kornyshev, A.A.1
Lee, D.J.2
Leikin, S.3
Wynveen, A.4
Zimmerman, S.B.5
|