-
1
-
-
11944274056
-
-
SCIEAS 0036-8075 10.1126/science.269.5221.198
-
M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Science SCIEAS 0036-8075 10.1126/science.269.5221.198 269, 198 (1995).
-
(1995)
Science
, vol.269
, pp. 198
-
-
Anderson, M.H.1
Ensher, J.R.2
Matthews, M.R.3
Wieman, C.E.4
Cornell, E.A.5
-
2
-
-
0002683264
-
-
PHTOAD 0031-9228 10.1063/1.882898
-
W. Ketterle, Phys. Today PHTOAD 0031-9228 10.1063/1.882898 52, 30 (1999);
-
(1999)
Phys. Today
, vol.52
, pp. 30
-
-
Ketterle, W.1
-
3
-
-
0037075612
-
-
NATUAS 0028-0836 10.1038/416211a
-
J. R. Anglin and W. Ketterle, Nature NATUAS 0028-0836 10.1038/416211a 416, 211 (2002).
-
(2002)
Nature
, vol.416
, pp. 211
-
-
Anglin, J.R.1
Ketterle, W.2
-
4
-
-
0036659386
-
-
RMPHAT 0034-6861 10.1103/RevModPhys.74.875
-
E. A. Cornell and C. E. Wieman, Rev. Mod. Phys. RMPHAT 0034-6861 10.1103/RevModPhys.74.875 74, 875 (2002), and references therein.
-
(2002)
Rev. Mod. Phys.
, vol.74
, pp. 875
-
-
Cornell, E.A.1
Wieman, C.E.2
-
5
-
-
0001398988
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.83.1566
-
E. Nielsen and J. H. Macek, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.83.1566 83, 1566 (1999).
-
(1999)
Phys. Rev. Lett.
, vol.83
, pp. 1566
-
-
Nielsen, E.1
MacEk, J.H.2
-
6
-
-
13444264910
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.68.043607
-
J. Dziarmaga and K. Sacha, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.68.043607 68, 043607 (2003);
-
(2003)
Phys. Rev. A
, vol.68
, pp. 043607
-
-
Dziarmaga, J.1
Sacha, K.2
-
7
-
-
0142188669
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.91.123201
-
T. Weber, J. Herbig, M. Mark, H.-C. Nägerl, and R. Grimm, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.91.123201 91, 123201 (2003).
-
(2003)
Phys. Rev. Lett.
, vol.91
, pp. 123201
-
-
Weber, T.1
Herbig, J.2
Mark, M.3
Nägerl, H.-C.4
Grimm, R.5
-
8
-
-
77956314727
-
-
Note that three-body losses can also be suppressed due to destructive interference of Efimov resonances;
-
Note that three-body losses can also be suppressed due to destructive interference of Efimov resonances;
-
-
-
-
9
-
-
33645017002
-
-
see, e.g., NATUAS 0028-0836 10.1038/nature04626
-
see, e.g., T. Kraemer, Nature NATUAS 0028-0836 10.1038/nature04626 440, 315 (2006).
-
(2006)
Nature
, vol.440
, pp. 315
-
-
Kraemer, T.1
-
10
-
-
77956327506
-
-
However, these effects are most relevant to large s-wave scattering lengths as (positive and negative). By contrast, the present investigation is concerned with small (positive) values of as and the three-body recombination into a molecule plus an atom with large opposite momenta (i.e., not an Efimov state); see also [15].
-
However, these effects are most relevant to large s -wave scattering lengths a s (positive and negative). By contrast, the present investigation is concerned with small (positive) values of a s and the three-body recombination into a molecule plus an atom with large opposite momenta (i.e., not an Efimov state); see also [15].
-
-
-
-
11
-
-
36749120625
-
-
JMAPAQ 0022-2488 10.1063/1.523304
-
B. Misra and E. C. G. Sudarshan, J. Math. Phys. JMAPAQ 0022-2488 10.1063/1.523304 18, 756 (1977);
-
(1977)
J. Math. Phys.
, vol.18
, pp. 756
-
-
Misra, B.1
Sudarshan, E.C.G.2
-
12
-
-
26144467285
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.41.2295
-
W. M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.41.2295 41, 2295 (1990);
-
(1990)
Phys. Rev. A
, vol.41
, pp. 2295
-
-
Itano, W.M.1
Heinzen, D.J.2
Bollinger, J.J.3
Wineland, D.J.4
-
14
-
-
60449110399
-
-
Three-body losses may also induce effective three-body interactions via the quantum Zeno effect, see, e.g., PRLTAO 0031-9007 10.1103/PhysRevLett.102. 040402
-
Three-body losses may also induce effective three-body interactions via the quantum Zeno effect, see, e.g., A. J. Daley, J. M. Taylor, S. Diehl, M. Baranov, and P. Zoller, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett. 102.040402 102, 040402 (2009);
-
(2009)
Phys. Rev. Lett.
, vol.102
, pp. 040402
-
-
Daley, A.J.1
Taylor, J.M.2
Diehl, S.3
Baranov, M.4
Zoller, P.5
-
15
-
-
72049089068
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.103.240401
-
A. Kantian, M. Dalmonte, S. Diehl, W. Hofstetter, P. Zoller, and A. J. Daley, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.103.240401 103, 240401 (2009);
-
(2009)
Phys. Rev. Lett.
, vol.103
, pp. 240401
-
-
Kantian, A.1
Dalmonte, M.2
Diehl, S.3
Hofstetter, W.4
Zoller, P.5
Daley, A.J.6
-
16
-
-
77749283252
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.104.096803
-
M. Roncaglia, M. Rizzi, and J. I. Cirac, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.104.096803 104, 096803 (2010).
-
(2010)
Phys. Rev. Lett.
, vol.104
, pp. 096803
-
-
Roncaglia, M.1
Rizzi, M.2
Cirac, J.I.3
-
17
-
-
77956303805
-
-
This mechanism is particularly strong in a restricted geometry, such as an optical lattice: Imagine two bosons occupying the same lattice site and a third one trying to tunnel to this site. If the decay rate (of three bosons at the same site) is much faster than the tunneling rate, three-body losses effectively act as frequent measurements and thus triple occupancy is suppressed in complete analogy to Eq. (2). An analogous effect works for two-body losses and has already been observed experimentally
-
This mechanism is particularly strong in a restricted geometry, such as an optical lattice: Imagine two bosons occupying the same lattice site and a third one trying to tunnel to this site. If the decay rate (of three bosons at the same site) is much faster than the tunneling rate, three-body losses effectively act as frequent measurements and thus triple occupancy is suppressed in complete analogy to Eq. (2). An analogous effect works for two-body losses and has already been observed experimentally
-
-
-
-
18
-
-
46449129331
-
-
see, 0036-8075 10.1126/science.1155309
-
see N. Syassen, Science 0036-8075 10.1126/science.1155309 320, 1329 (2008).
-
(2008)
Science
, vol.320
, pp. 1329
-
-
Syassen, N.1
-
19
-
-
77956299699
-
-
In these cases, the decay itself acts as a measurement process, and thus the underlying mechanism is very different from the one considered in this article, where the losses in an unrestricted gas are suppressed by external measurements.
-
In these cases, the decay itself acts as a measurement process, and thus the underlying mechanism is very different from the one considered in this article, where the losses in an unrestricted gas are suppressed by external measurements.
-
-
-
-
20
-
-
64549152828
-
-
PRLTAO 1751-8113 10.1088/1751-8113/41/49/493001
-
P. Facchi and S. Pascazio, J. Phys. A PRLTAO 1751-8113 10.1088/1751-8113/41/49/493001 41, 493001 (2008).
-
(2008)
J. Phys. A
, vol.41
, pp. 493001
-
-
Facchi, P.1
Pascazio, S.2
-
22
-
-
0042157120
-
-
APNYA6 0003-4916 10.1016/S0003-4916(03)00078-2
-
M. Frasca, Ann. Phys. (NY) APNYA6 0003-4916 10.1016/S0003-4916(03)00078-2 306, 193 (2003), and references therein.
-
(2003)
Ann. Phys. (NY)
, vol.306
, pp. 193
-
-
Frasca, M.1
-
23
-
-
77956319063
-
-
Note that the crossover time T* in Eqs. (5) and (11) should not be confused with the time scale τ in Eq. (2) which is sometimes [9] called "quantum Zeno time".
-
Note that the crossover time T * in Eqs. (5) and (11) should not be confused with the time scale τ in Eq. (2) which is sometimes [9] called "quantum Zeno time".
-
-
-
-
24
-
-
2542477197
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.92.140401
-
C. P. Search, W. Zhang, and P. Meystre, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.92.140401 92, 140401 (2004).
-
(2004)
Phys. Rev. Lett.
, vol.92
, pp. 140401
-
-
Search, C.P.1
Zhang, W.2
Meystre, P.3
-
25
-
-
77956312765
-
-
This work studies the inhibition of three-body losses via resonant 2π laser pulses. However, these 2π laser pulses do not correspond to an actual measurement but induce a phase shift. Therefore, this mechanism is not the quantum Zeno effect, but corresponds to passive error correction techniques known in quantum-information theory under the names "spin-echo" or "bang-bang" method
-
This work studies the inhibition of three-body losses via resonant 2 π laser pulses. However, these 2 π laser pulses do not correspond to an actual measurement but induce a phase shift. Therefore, this mechanism is not the quantum Zeno effect, but corresponds to passive error correction techniques known in quantum-information theory under the names "spin-echo" or "bang-bang" method
-
-
-
-
26
-
-
0001854558
-
-
see, e.g., 1570-0755 10.1023/A:1019697017584
-
see, e.g., M. S. Byrd and D. A. Lidar, Quant. Info. Proc. 1570-0755 10.1023/A:1019697017584 1, 19 (2002).
-
(2002)
Quant. Info. Proc.
, vol.1
, pp. 19
-
-
Byrd, M.S.1
Lidar, D.A.2
-
27
-
-
77956298401
-
-
Nevertheless, both phenomena are based on the crucial difference between summing amplitudes and probabilities in quantum theory. Thus, the repetition rate of the 2π laser pulses should lie in the quantum Zeno regime in order to induce a significant slowdown (in the Fermi-golden rule regime, they would have very little effect), i.e., similar temporal constraints should apply in both cases.
-
Nevertheless, both phenomena are based on the crucial difference between summing amplitudes and probabilities in quantum theory. Thus, the repetition rate of the 2 π laser pulses should lie in the quantum Zeno regime in order to induce a significant slowdown (in the Fermi-golden rule regime, they would have very little effect), i.e., similar temporal constraints should apply in both cases.
-
-
-
-
28
-
-
0000198920
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.83.2691
-
E. Timmermans, P. Tommasini, R. Côté, M. Hussein, and A. Kerman, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.83.2691 83, 2691 (1999);
-
(1999)
Phys. Rev. Lett.
, vol.83
, pp. 2691
-
-
Timmermans, E.1
Tommasini, P.2
Côté, R.3
Hussein, M.4
Kerman, A.5
-
29
-
-
0037191477
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.89.180401
-
S. J. J. M. F. Kokkelmans and M. J. Holland, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.89.180401 89, 180401 (2002).
-
(2002)
Phys. Rev. Lett.
, vol.89
, pp. 180401
-
-
Kokkelmans, S.J.J.M.F.1
Holland, M.J.2
-
30
-
-
77956334587
-
-
It has been shown that the recombination into loosely bound molecules, with a large positive s-wave scattering length as, obeys universal features in the sense that all relevant quantities are unique functions of as. For example, the binding energy Eb of the s-wave bound state takes the simple form Eb=-1/(mas2) from which it follows that k0=2/√3as;
-
It has been shown that the recombination into loosely bound molecules, with a large positive s -wave scattering length a s, obeys universal features in the sense that all relevant quantities are unique functions of a s. For example, the binding energy E b of the s -wave bound state takes the simple form E b = - 1 / (ma s 2) from which it follows that k 0 = 2 / √ 3 a s;
-
-
-
-
31
-
-
2342582616
-
-
see, e.g., PRPLCM 0370-1573 10.1016/j.physrep.2004.03.003
-
see, e.g., R. A. Duine and H. T. C. Stoof, Phys. Rep. PRPLCM 0370-1573 10.1016/j.physrep.2004.03.003 396, 115 (2004);
-
(2004)
Phys. Rep.
, vol.396
, pp. 115
-
-
Duine, R.A.1
Stoof, H.T.C.2
-
32
-
-
33845202266
-
-
RMPHAT 0034-6861 10.1103/RevModPhys.78.1311
-
T. Köhler and K. Góral, Rev. Mod. Phys. RMPHAT 0034-6861 10.1103/RevModPhys.78.1311 78, 1311 (2006).
-
(2006)
Rev. Mod. Phys.
, vol.78
, pp. 1311
-
-
Köhler, T.1
Góral, K.2
-
33
-
-
77956309591
-
-
If this universality also extends to the internal structure of W, then the quantum Zeno effect is not applicable in this case.
-
If this universality also extends to the internal structure of W, then the quantum Zeno effect is not applicable in this case.
-
-
-
|