-
1
-
-
34547294800
-
-
ZZZZZZ 1745-2473,. 10.1038/nphys619
-
V. S. Pribiag, I. N. Krivorotov, G. D. Fuchs, P. M. Braganca, O. Ozatay, J. C. Sankey, D. C. Ralph, and R. A. Buhrman, Nat. Phys. ZZZZZZ 1745-2473 3, 498 (2007). 10.1038/nphys619
-
(2007)
Nat. Phys.
, vol.3
, pp. 498
-
-
Pribiag, V.S.1
Krivorotov, I.N.2
Fuchs, G.D.3
Braganca, P.M.4
Ozatay, O.5
Sankey, J.C.6
Ralph, D.C.7
Buhrman, R.A.8
-
2
-
-
34247328195
-
-
PRBMDO 0163-1829, (R). 10.1103/PhysRevB.75.140404
-
M. R. Pufall, W. H. Rippard, M. L. Schneider, and S. E. Russek, Phys. Rev. B PRBMDO 0163-1829 75, 140404 (R) (2007). 10.1103/PhysRevB.75.140404
-
(2007)
Phys. Rev. B
, vol.75
, pp. 140404
-
-
Pufall, M.R.1
Rippard, W.H.2
Schneider, M.L.3
Russek, S.E.4
-
3
-
-
45749119514
-
-
PRLTAO 0031-9007,. 10.1103/PhysRevLett.100.257201
-
Q. Mistral, M. van Kampen, G. Hrkac, J.-V. Kim, T. Devolder, P. Crozat, C. Chappert, L. Lagae, and T. Schrefl, Phys. Rev. Lett. PRLTAO 0031-9007 100, 257201 (2008). 10.1103/PhysRevLett.100.257201
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 257201
-
-
Mistral, Q.1
Van Kampen, M.2
Hrkac, G.3
Kim, J.-V.4
Devolder, T.5
Crozat, P.6
Chappert, C.7
Lagae, L.8
Schrefl, T.9
-
4
-
-
70249105353
-
-
PRBMDO 0163-1829,. 10.1103/PhysRevB.80.054412
-
R. Lehndorff, D. E. Bürgler, S. Gliga, R. Hertel, P. Grünberg, C. M. Schneider, and Z. Celinski, Phys. Rev. B PRBMDO 0163-1829 80, 054412 (2009). 10.1103/PhysRevB.80.054412
-
(2009)
Phys. Rev. B
, vol.80
, pp. 054412
-
-
Lehndorff, R.1
Bürgler, D.E.2
Gliga, S.3
Hertel, R.4
Grünberg, P.5
Schneider, C.M.6
Celinski, Z.7
-
5
-
-
65249129994
-
-
JAPIAU 0021-8979,. 10.1063/1.3068627
-
N. Theodoropoulou, A. Sharma, W. P. Pratt, Jr., and J. Bass, J. Appl. Phys. JAPIAU 0021-8979 105, 07D122 (2009). 10.1063/1.3068627
-
(2009)
J. Appl. Phys.
, vol.105
-
-
Theodoropoulou, N.1
Sharma, A.2
Pratt Jr., W.P.3
Bass, J.4
-
6
-
-
73649096916
-
-
PRBMDO 0163-1829, (R). 10.1103/PhysRevB.80.180411
-
V. S. Pribiag, G. Finocchio, B. J. Williams, D. C. Ralph, and R. A. Buhrman, Phys. Rev. B PRBMDO 0163-1829 80, 180411 (R) (2009). 10.1103/PhysRevB.80.180411
-
(2009)
Phys. Rev. B
, vol.80
, pp. 180411
-
-
Pribiag, V.S.1
Finocchio, G.2
Williams, B.J.3
Ralph, D.C.4
Buhrman, R.A.5
-
7
-
-
84864257974
-
-
doi:10.1038/ncomms1006 10.1038/ncomms1006.
-
A. Dussaux, B. Georges, J. Grollier, V. Cros, A. V. Khvalkovskiy, A. Fukushima, M. Konoto, H. Kubota, K. Yakushiji, S. Yuasa, K. A. Zvezdin, K. Ando, and A. Fert, Nat. Commun. 1, 8, doi:10.1038/ncomms1006 10.1038/ncomms1006 (2010).
-
(2010)
Nat. Commun.
, vol.1
, pp. 8
-
-
Dussaux, A.1
Georges, B.2
Grollier, J.3
Cros, V.4
Khvalkovskiy, A.V.5
Fukushima, A.6
Konoto, M.7
Kubota, H.8
Yakushiji, K.9
Yuasa, S.10
Zvezdin, K.A.11
Ando, K.12
Fert, A.13
-
8
-
-
68949172972
-
-
NNAABX 1748-3387,. 10.1038/nnano.2009.143
-
A. Ruotolo, V. Cros, B. Georges, A. Dussaux, J. Grollier, C. Deranlot, R. Guillemet, K. Bouzehouane, S. Fusil, and A. Fert, Nat. Nanotechnol. NNAABX 1748-3387 4, 528 (2009). 10.1038/nnano.2009.143
-
(2009)
Nat. Nanotechnol.
, vol.4
, pp. 528
-
-
Ruotolo, A.1
Cros, V.2
Georges, B.3
Dussaux, A.4
Grollier, J.5
Deranlot, C.6
Guillemet, R.7
Bouzehouane, K.8
Fusil, S.9
Fert, A.10
-
9
-
-
71249136821
-
-
PRBMDO 0163-1829,. 10.1103/PhysRevB.80.140401
-
A. V. Khvalkovskiy, J. Grollier, A. Dussaux, K. A. Zvezdin, and V. Cros, Phys. Rev. B PRBMDO 0163-1829 80, 140401 (2009). 10.1103/PhysRevB.80.140401
-
(2009)
Phys. Rev. B
, vol.80
, pp. 140401
-
-
Khvalkovskiy, A.V.1
Grollier, J.2
Dussaux, A.3
Zvezdin, K.A.4
Cros, V.5
-
10
-
-
37249050380
-
Excitation of spin dynamics by spin-polarized current in vortex state magnetic disks
-
DOI 10.1103/PhysRevLett.99.247208
-
B. A. Ivanov and C. E. Zaspel, Phys. Rev. Lett. PRLTAO 0031-9007 99, 247208 (2007). 10.1103/PhysRevLett.99.247208 (Pubitemid 350276596)
-
(2007)
Physical Review Letters
, vol.99
, Issue.24
, pp. 247208
-
-
Ivanov, B.A.1
Zaspel, C.E.2
-
11
-
-
37149045007
-
Spin-torque-driven vortex dynamics in a spin-valve pillar with a perpendicular polarizer
-
DOI 10.1063/1.2822436
-
Y. Liu, H. He, and Z. Zhang, Appl. Phys. Lett. APPLAB 0003-6951 91, 242501 (2007). 10.1063/1.2822436 (Pubitemid 350262013)
-
(2007)
Applied Physics Letters
, vol.91
, Issue.24
, pp. 242501
-
-
Liu, Y.1
He, H.2
Zhang, Z.3
-
13
-
-
0030174367
-
-
JMMMDC 0304-8853,. 10.1016/0304-8853(96)00062-5
-
J. Slonczewski, J. Magn. Magn. Mater. JMMMDC 0304-8853 159, L1 (1996). 10.1016/0304-8853(96)00062-5
-
(1996)
J. Magn. Magn. Mater.
, vol.159
, pp. 1
-
-
Slonczewski, J.1
-
14
-
-
0037094954
-
Eigenfrequencies of vortex state excitations in magnetic submicron-size disks
-
DOI 10.1063/1.1450816
-
K. Yu. Guslienko, B. A. Ivanov, V. Novosad, H. Shima, Y. Otani, and K. Fukamichi, J. Appl. Phys. JAPIAU 0021-8979 91, 8037 (2002). 10.1063/1.1450816 (Pubitemid 34636350)
-
(2002)
Journal of Applied Physics
, vol.91
, pp. 8037
-
-
Guslienko, K.Yu.1
Ivanov, B.A.2
Novosad, V.3
Otani, Y.4
Shima, H.5
Fukamichi, K.6
-
15
-
-
33749665174
-
Low-frequency vortex dynamic susceptibility and relaxation in mesoscopic ferromagnetic dots
-
DOI 10.1063/1.2221904
-
K. Yu. Guslienko, Appl. Phys. Lett. APPLAB 0003-6951 89, 022510 (2006). 10.1063/1.2221904 (Pubitemid 44548939)
-
(2006)
Applied Physics Letters
, vol.89
, Issue.2
, pp. 022510
-
-
Guslienko, K.Yu.1
-
17
-
-
67449094444
-
-
PRBMDO 0163-1829,. 10.1103/PhysRevB.79.184424
-
Y.-S. Choi, K.-S. Lee, and S.-K. Kim, Phys. Rev. B PRBMDO 0163-1829 79, 184424 (2009). 10.1103/PhysRevB.79.184424
-
(2009)
Phys. Rev. B
, vol.79
, pp. 184424
-
-
Choi, Y.-S.1
Lee, K.-S.2
Kim, S.-K.3
-
18
-
-
77956245763
-
-
We note however that variation in time of even uniform planar polarization can have a similar effect on the vortex core as the variation in in space discussed in this work. Thus, a moving uniform planar polarizer can in principle excite the vortex motion.
-
We note however that variation in time of even uniform planar polarization p can have a similar effect on the vortex core as the variation in p in space discussed in this work. Thus, a moving uniform planar polarizer can in principle excite the vortex motion.
-
-
-
-
19
-
-
77956250165
-
-
To check different signs of the current without changing the chirality of the Oersted field, we consider that the free layer can be above as well as below the polarizer layer in the stack.
-
To check different signs of the current without changing the chirality of the Oersted field, we consider that the free layer can be above as well as below the polarizer layer in the stack.
-
-
-
-
20
-
-
34548245640
-
Electric-current-driven vortex-core reversal in soft magnetic nanodots
-
DOI 10.1063/1.2773748
-
S.-K. Kim, Y.-S. Choi, K.-S. Lee, K. Y. Guslienko, and D.-E. Jeong, Appl. Phys. Lett. APPLAB 0003-6951 91, 082506 (2007). 10.1063/1.2773748 (Pubitemid 47321708)
-
(2007)
Applied Physics Letters
, vol.91
, Issue.8
, pp. 082506
-
-
Kim, S.-K.1
Choi, Y.-S.2
Lee, K.-S.3
Guslienko, K.Y.4
Jeong, D.-E.5
-
21
-
-
58249124605
-
-
PRLTAO 0031-9007,. 10.1103/PhysRevLett.101.267206
-
K.-S. Lee, S.-K. Kim, Y.-S. Yu, Y.-S. Choi, K. Yu Guslienko, H. Jung, and P. Fischer, Phys. Rev. Lett. PRLTAO 0031-9007 101, 267206 (2008). 10.1103/PhysRevLett.101.267206
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 267206
-
-
Lee, K.-S.1
Kim, S.-K.2
Yu, Y.-S.3
Choi, Y.-S.4
Guslienko, K.Y.5
Jung, H.6
Fischer, P.7
-
22
-
-
38349130231
-
-
PRLTAO 0031-9007,. 10.1103/PhysRevLett.100.027203
-
K. Yu. Guslienko, K.-S. Lee, and S.-K. Kim, Phys. Rev. Lett. PRLTAO 0031-9007 100, 027203 (2008). 10.1103/PhysRevLett.100.027203
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 027203
-
-
Guslienko, K.Yu.1
Lee, K.-S.2
Kim, S.-K.3
-
23
-
-
77956245459
-
-
We obtain the core radius b by fitting the simulated static vortex profile with the Ansatz (2), which gives b=16 nm and the parameter =1.46 is found using the numerical procedure described in Ref. The first critical current can be captured by the analytical model by taking into account the higher order terms in W (a) and W (a) for a≈b, an issue that is going beyond the scope of the present work.
-
We obtain the core radius b by fitting the simulated static vortex profile with the Ansatz (2), which gives b=16 nm and the parameter =1.46 is found using the numerical procedure described in Ref. The first critical current can be captured by the analytical model by taking into account the higher order terms in W (a) and W (a) for a≈b, an issue that is going beyond the scope of the present work.
-
-
-
|