-
2
-
-
0037222105
-
-
10.1103/PhysRevB.67.020403
-
J. P. Park, Phys. Rev. B 67, 020403 (R) (2003). 10.1103/PhysRevB.67. 020403
-
(2003)
Phys. Rev. B
, vol.67
, pp. 020403
-
-
Park, J.P.1
-
4
-
-
33947246989
-
-
10.1103/PhysRevLett.98.117201
-
R. Hertel, Phys. Rev. Lett. 98, 117201 (2007). 10.1103/PhysRevLett.98. 117201
-
(2007)
Phys. Rev. Lett.
, vol.98
, pp. 117201
-
-
Hertel, R.1
-
5
-
-
34047109683
-
-
10.1038/nmat1867
-
K. Yamada, Nature Mater. 6, 270 (2007). 10.1038/nmat1867
-
(2007)
Nature Mater.
, vol.6
, pp. 270
-
-
Yamada, K.1
-
6
-
-
38349130231
-
-
10.1103/PhysRevLett.100.027203
-
K. Yu. Guslienko, Phys. Rev. Lett. 100, 027203 (2008). 10.1103/PhysRevLett.100.027203
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 027203
-
-
Yu. Guslienko, K.1
-
7
-
-
34547294800
-
-
10.1038/nphys619
-
V. S. Pribiag, Nat. Phys. 3, 498 (2007). 10.1038/nphys619
-
(2007)
Nat. Phys.
, vol.3
, pp. 498
-
-
Pribiag, V.S.1
-
8
-
-
34247328195
-
-
10.1103/PhysRevB.75.140404
-
M. R. Pufall, Phys. Rev. B 75, 140404 (R) (2007). 10.1103/PhysRevB.75. 140404
-
(2007)
Phys. Rev. B
, vol.75
, pp. 140404
-
-
Pufall, M.R.1
-
9
-
-
45749119514
-
-
10.1103/PhysRevLett.100.257201
-
Q. Mistral, Phys. Rev. Lett. 100, 257201 (2008). 10.1103/PhysRevLett.100. 257201
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 257201
-
-
Mistral, Q.1
-
10
-
-
0000004274
-
-
10.1103/PhysRevLett.30.230;
-
A. A. Thiele, Phys. Rev. Lett. 30, 230 (1973) 10.1103/PhysRevLett.30.230
-
(1973)
Phys. Rev. Lett.
, vol.30
, pp. 230
-
-
Thiele, A.A.1
-
11
-
-
30244554885
-
-
10.1103/PhysRevB.26.3758
-
D. L. Huber, Phys. Rev. B 26, 3758 (1982). 10.1103/PhysRevB.26.3758
-
(1982)
Phys. Rev. B
, vol.26
, pp. 3758
-
-
Huber, D.L.1
-
12
-
-
37249050380
-
-
10.1103/PhysRevLett.99.247208
-
B. A. Ivanov and C. E. Zaspel, Phys. Rev. Lett. 99, 247208 (2007). 10.1103/PhysRevLett.99.247208
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 247208
-
-
Ivanov, B.A.1
Zaspel, C.E.2
-
13
-
-
37149045007
-
-
10.1063/1.2822436
-
Y. Liu, Appl. Phys. Lett. 91, 242501 (2007). 10.1063/1.2822436
-
(2007)
Appl. Phys. Lett.
, vol.91
, pp. 242501
-
-
Liu, Y.1
-
14
-
-
15944378194
-
-
10.1209/epl/i2004-10452-6
-
A. Thiaville, Europhys. Lett. 69, 990 (2005). 10.1209/epl/i2004-10452-6
-
(2005)
Europhys. Lett.
, vol.69
, pp. 990
-
-
Thiaville, A.1
-
15
-
-
37649008930
-
-
10.1103/PhysRevB.76.224426
-
B. Krüger, Phys. Rev. B 76, 224426 (2007). 10.1103/PhysRevB.76. 224426
-
(2007)
Phys. Rev. B
, vol.76
, pp. 224426
-
-
Krüger, B.1
-
17
-
-
0030174367
-
-
10.1016/0304-8853(96)00062-5
-
J. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996). 10.1016/0304-8853(96)00062-5
-
(1996)
J. Magn. Magn. Mater.
, vol.159
, pp. 1
-
-
Slonczewski, J.1
-
19
-
-
55849108506
-
-
10.1063/1.3012380
-
Y.-S. Choi, Appl. Phys. Lett. 93, 182508 (2008). 10.1063/1.3012380
-
(2008)
Appl. Phys. Lett.
, vol.93
, pp. 182508
-
-
Choi, Y.-S.1
-
20
-
-
71249103159
-
-
The details of this calculation and verification will be given in a forthcoming publication. We note that for J≤ 107 A/ cm2 the contribution of WOe to the total density is relatively small (1-10%); however it can become predominant for larger J.
-
The details of this calculation and verification will be given in a forthcoming publication. We note that for J≤ 107 A/ cm2 the contribution of WOe to the total density is relatively small (1-10%); however it can become predominant for larger J.
-
-
-
-
22
-
-
41549154993
-
-
10.1103/PhysRevLett.100.127204
-
O. A. Tretiakov, Phys. Rev. Lett. 100, 127204 (2008). 10.1103/PhysRevLett.100.127204
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 127204
-
-
Tretiakov, O.A.1
-
23
-
-
71249122015
-
-
The core of the approach of Ref. is the calculation of generalized forces acting on a soliton. This is the key difference to our approach, which is based on the calculation of the system energy dissipation. In terms of generality and validity these two approaches are equivalent.
-
The core of the approach of Ref. is the calculation of generalized forces acting on a soliton. This is the key difference to our approach, which is based on the calculation of the system energy dissipation. In terms of generality and validity these two approaches are equivalent.
-
-
-
-
24
-
-
0141596165
-
-
10.1038/nature01967
-
S. I. Kiselev, Nature (London) 425, 380 (2003). 10.1038/nature01967
-
(2003)
Nature (London)
, vol.425
, pp. 380
-
-
Kiselev, S.I.1
-
25
-
-
29644436756
-
-
This fact, which makes vortex nanopillar STNOs very promising for applications, is explained by the general statement that the critical magnitude of excitation scales with the energy of the excited mode. For a vortex STNOs, this statement is illustrated by our expression [Eq. d8] and by earlier findings based on the Thiele approach (Ref.). A similar expression for uniform nanopillar STNOs is derived by 10.1103/PhysRevB.72.094428
-
This fact, which makes vortex nanopillar STNOs very promising for applications, is explained by the general statement that the critical magnitude of excitation scales with the energy of the excited mode. For a vortex STNOs, this statement is illustrated by our expression [Eq.] and by earlier findings based on the Thiele approach (Ref.). A similar expression for uniform nanopillar STNOs is derived by A. N. Slavin and V. S. Tiberkevich, Phys. Rev. B 72, 094428 (2005). As the frequencies of the excitations differ by about an order of magnitude, the critical current densities also differ by approximately the same factor. 10.1103/PhysRevB.72.094428
-
(2005)
Phys. Rev. B
, vol.72
, pp. 094428
-
-
Slavin, A.N.1
Tiberkevich, V.S.2
-
26
-
-
71249098810
-
-
From Eq. d9 it follows a α exp (-α η′ ωt) at J=0. Therefore η and η′ are equivalent to each other; correspondingly, the simulations give a single value for η and η′.
-
From Eq. it follows a α exp (-α η′ ωt) at J=0. Therefore η and η′ are equivalent to each other; correspondingly, the simulations give a single value for η and η′.
-
-
-
|