메뉴 건너뛰기




Volumn 49, Issue 35, 2010, Pages 7582-7589

Engineering the enolase magnesium II binding site: Implications for its evolution

Author keywords

[No Author keywords available]

Indexed keywords

BINDING ENERGY; CARBOXYLIC ACIDS; CATALYSIS; CRYSTAL STRUCTURE; METAL IONS; ORGANIC ACIDS; PROTONS; QUANTUM CHEMISTRY; REACTION INTERMEDIATES;

EID: 77956168606     PISSN: 00062960     EISSN: 15204995     Source Type: Journal    
DOI: 10.1021/bi100954f     Document Type: Article
Times cited : (22)

References (31)
  • 1
    • 0030009782 scopus 로고    scopus 로고
    • A carboxylate oxygen of the substrate bridges the magnesium ions at the active site of enolase: Structure of the yeast enzyme complexed with the equilibrium mixture of 2-phosphoglycerate and phosphoenolpyruvate at 1.8 Å resolution
    • Larsen, T. M., Wedekind, J. E., Rayment, I., and Reed, G. H. (1996) A carboxylate oxygen of the substrate bridges the magnesium ions at the active site of enolase: Structure of the yeast enzyme complexed with the equilibrium mixture of 2-phosphoglycerate and phosphoenolpyruvate at 1.8 Å resolution Biochemistry 35, 4349-4358
    • (1996) Biochemistry , vol.35 , pp. 4349-4358
    • Larsen, T.M.1    Wedekind, J.E.2    Rayment, I.3    Reed, G.H.4
  • 3
    • 0030827288 scopus 로고    scopus 로고
    • Mechanism of enolase: The crystal structure of asymmetric dimer enolase-2-phospho- d -glycerate/enolase-phosphoenolpyruvate at 2.0 Å resolution
    • Zhang, E., Brewer, J. M., Minor, W., Carreira, L. A., and Lebioda, L. (1997) Mechanism of enolase: The crystal structure of asymmetric dimer enolase-2-phospho- d -glycerate/enolase-phosphoenolpyruvate at 2.0 Å resolution Biochemistry 36, 12526-12534
    • (1997) Biochemistry , vol.36 , pp. 12526-12534
    • Zhang, E.1    Brewer, J.M.2    Minor, W.3    Carreira, L.A.4    Lebioda, L.5
  • 4
    • 28944444836 scopus 로고    scopus 로고
    • Structure and catalytic properties of an engineered heterodimer of enolase composed of one active and one inactive subunit
    • Sims, P. A., Menefee, A. L., Larsen, T. M., Mansoorabadi, S. O., and Reed, G. H. (2006) Structure and catalytic properties of an engineered heterodimer of enolase composed of one active and one inactive subunit J. Mol. Biol. 355, 422-431
    • (2006) J. Mol. Biol. , vol.355 , pp. 422-431
    • Sims, P.A.1    Menefee, A.L.2    Larsen, T.M.3    Mansoorabadi, S.O.4    Reed, G.H.5
  • 5
    • 0037095621 scopus 로고    scopus 로고
    • Functional and structural changes due to a serine to alanine mutation in the active-site flap of enolase
    • Poyner, R. R., Larsen, T. M., Wong, S. W., and Reed, G. H. (2002) Functional and structural changes due to a serine to alanine mutation in the active-site flap of enolase Arch. Biochem. Biophys. 401, 155-163
    • (2002) Arch. Biochem. Biophys. , vol.401 , pp. 155-163
    • Poyner, R.R.1    Larsen, T.M.2    Wong, S.W.3    Reed, G.H.4
  • 7
    • 0030019648 scopus 로고    scopus 로고
    • Toward identification of acid/base catalysts in the active site of enolase: Comparison of the properties of K345A, E168Q, and E211Q variants
    • Poyner, R. R., Laughlin, L. T., Sowa, G. A., and Reed, G. H. (1996) Toward identification of acid/base catalysts in the active site of enolase: Comparison of the properties of K345A, E168Q, and E211Q variants Biochemistry 35, 1692-1699
    • (1996) Biochemistry , vol.35 , pp. 1692-1699
    • Poyner, R.R.1    Laughlin, L.T.2    Sowa, G.A.3    Reed, G.H.4
  • 9
    • 0027964654 scopus 로고
    • 2+) complex of yeast enolase and the intermediate analog phosphonoacetohydroxamate at 2.1-Å resolution
    • 2+) complex of yeast enolase and the intermediate analog phosphonoacetohydroxamate at 2.1-Å resolution Biochemistry 33, 9333-9342
    • (1994) Biochemistry , vol.33 , pp. 9333-9342
    • Wedekind, J.E.1    Poyner, R.R.2    Reed, G.H.3    Rayment, I.4
  • 10
    • 0034686678 scopus 로고    scopus 로고
    • How is the active site of enolase organized to catalyze two different reaction steps?
    • Liu, H. Y., Zhang, Y. K., and Yang, W. T. (2000) How is the active site of enolase organized to catalyze two different reaction steps? J. Am. Chem. Soc. 122, 6560-6570
    • (2000) J. Am. Chem. Soc. , vol.122 , pp. 6560-6570
    • Liu, H.Y.1    Zhang, Y.K.2    Yang, W.T.3
  • 11
    • 1842800737 scopus 로고
    • Understanding Enzyme-Catalyzed Proton Abstraction from Carbon Acids: Details of Stepwise Mechanisms for β-Elimination Reactions
    • Gerlt, J. A. and Gassman, P. G. (1992) Understanding Enzyme-Catalyzed Proton Abstraction from Carbon Acids: Details of Stepwise Mechanisms for β-Elimination Reactions J. Am. Chem. Soc. 114, 5928-5934
    • (1992) J. Am. Chem. Soc. , vol.114 , pp. 5928-5934
    • Gerlt, J.A.1    Gassman, P.G.2
  • 12
    • 0027140350 scopus 로고
    • Electrostatic Stabilization Can Explain the Unexpected Acidity of Carbon Acids in Enzyme-Catalyzed Reactions
    • Guthrie, J. P. and Kluger, R. (1993) Electrostatic Stabilization Can Explain the Unexpected Acidity of Carbon Acids in Enzyme-Catalyzed Reactions J. Am. Chem. Soc. 115, 11569-11572
    • (1993) J. Am. Chem. Soc. , vol.115 , pp. 11569-11572
    • Guthrie, J.P.1    Kluger, R.2
  • 14
    • 36049048325 scopus 로고    scopus 로고
    • Evolution of enzymatic activities in the enolase superfamily: D -Mannonate dehydratase from Novosphingobium aromaticivorans
    • Rakus, J. F., Fedorov, A. A., Fedorov, E. V., Glasner, M. E., Vick, J. E., Babbitt, P. C., Almo, S. C., and Gerlt, J. A. (2007) Evolution of enzymatic activities in the enolase superfamily: d -Mannonate dehydratase from Novosphingobium aromaticivorans Biochemistry 46, 12896-12908
    • (2007) Biochemistry , vol.46 , pp. 12896-12908
    • Rakus, J.F.1    Fedorov, A.A.2    Fedorov, E.V.3    Glasner, M.E.4    Vick, J.E.5    Babbitt, P.C.6    Almo, S.C.7    Gerlt, J.A.8
  • 15
    • 0035896029 scopus 로고    scopus 로고
    • Generalized dead-end elimination algorithms make large-scale protein side chain structure prediction tractable: Implications for protein design and structural genomics
    • Looger, L. L. and Hellinga, H. W. (2001) Generalized dead-end elimination algorithms make large-scale protein side chain structure prediction tractable: Implications for protein design and structural genomics J. Mol. Biol. 307, 429-445
    • (2001) J. Mol. Biol. , vol.307 , pp. 429-445
    • Looger, L.L.1    Hellinga, H.W.2
  • 16
    • 0032473874 scopus 로고    scopus 로고
    • Significance of the enzymatic properties of yeast S39A enolase to the catalytic mechanism
    • Brewer, J. M., Glover, C. V., Holland, M. J., and Lebioda, L. (1998) Significance of the enzymatic properties of yeast S39A enolase to the catalytic mechanism Biochim. Biophys. Acta 1383, 351-355
    • (1998) Biochim. Biophys. Acta , vol.1383 , pp. 351-355
    • Brewer, J.M.1    Glover, C.V.2    Holland, M.J.3    Lebioda, L.4
  • 17
    • 0015240433 scopus 로고
    • The Purification and Charactization of Escherichia coli Enolase
    • Spring, T. G. and Wold, F. (1971) The Purification and Charactization of Escherichia coli Enolase J. Biol. Chem. 246, 6797-6802
    • (1971) J. Biol. Chem. , vol.246 , pp. 6797-6802
    • Spring, T.G.1    Wold, F.2
  • 18
    • 85027632383 scopus 로고
    • Automatic-Indexing of Rotation Diffraction Patterns
    • Kabsch, W. (1988) Automatic-Indexing of Rotation Diffraction Patterns J. Appl. Crystallogr. 21, 67-71
    • (1988) J. Appl. Crystallogr. , vol.21 , pp. 67-71
    • Kabsch, W.1
  • 19
    • 0028103275 scopus 로고
    • The CCP4 suite: Programs for protein crystallography
    • Collaborative Computational Project Number 4 ()
    • Collaborative Computational Project Number 4 (1994) The CCP4 suite: Programs for protein crystallography Acta Crystallogr. D50, 760-763
    • (1994) Acta Crystallogr. , vol.50 , pp. 760-763
  • 20
    • 0030924992 scopus 로고    scopus 로고
    • Refinement of macromolecular structures by the maximum-likelihood method
    • Murshudov, G. N., Vagin, A. A., and Dodson, E. J. (1997) Refinement of macromolecular structures by the maximum-likelihood method Acta Crystallogr. D53, 240-255
    • (1997) Acta Crystallogr. , vol.53 , pp. 240-255
    • Murshudov, G.N.1    Vagin, A.A.2    Dodson, E.J.3
  • 21
    • 13244281317 scopus 로고    scopus 로고
    • Coot: Model-building tools for molecular graphics
    • Emsley, P. and Cowtan, K. (2004) Coot: Model-building tools for molecular graphics Acta Crystallogr. D60, 2126-2132
    • (2004) Acta Crystallogr. , vol.60 , pp. 2126-2132
    • Emsley, P.1    Cowtan, K.2
  • 25
    • 0000825586 scopus 로고
    • Studies on the enzyme enolase. I. Equilibrium studies
    • Wold, F. and Ballou, C. E. (1957) Studies on the enzyme enolase. I. Equilibrium studies J. Biol. Chem. 227, 301-312
    • (1957) J. Biol. Chem. , vol.227 , pp. 301-312
    • Wold, F.1    Ballou, C.E.2
  • 28
    • 0028901184 scopus 로고
    • Octahedral coordination at the high-affinity metal site in enolase: Crystallographic analysis of the MgII-enzyme complex from yeast at 1.9 Å resolution
    • Wedekind, J. E., Reed, G. H., and Rayment, I. (1995) Octahedral coordination at the high-affinity metal site in enolase: Crystallographic analysis of the MgII-enzyme complex from yeast at 1.9 Å resolution Biochemistry 34, 4325-4330
    • (1995) Biochemistry , vol.34 , pp. 4325-4330
    • Wedekind, J.E.1    Reed, G.H.2    Rayment, I.3
  • 29
    • 0037489365 scopus 로고    scopus 로고
    • Reverse protonation is the key to general acid-base catalysis in enolase
    • Sims, P. A., Larsen, T. M., Poyner, R. R., Cleland, W. W., and Reed, G. H. (2003) Reverse protonation is the key to general acid-base catalysis in enolase Biochemistry 42, 8298-8306
    • (2003) Biochemistry , vol.42 , pp. 8298-8306
    • Sims, P.A.1    Larsen, T.M.2    Poyner, R.R.3    Cleland, W.W.4    Reed, G.H.5
  • 30
    • 0017373319 scopus 로고
    • Magnesium ion requirements for yeast enolase activity
    • Faller, L. D., Baroudy, B. M., Johnson, A. M., and Ewall, R. X. (1977) Magnesium ion requirements for yeast enolase activity Biochemistry 16, 3864-3869
    • (1977) Biochemistry , vol.16 , pp. 3864-3869
    • Faller, L.D.1    Baroudy, B.M.2    Johnson, A.M.3    Ewall, R.X.4
  • 31
    • 0035838359 scopus 로고    scopus 로고
    • Role of metal ions in catalysis by enolase: An ordered kinetic mechanism for a single substrate enzyme
    • Poyner, R. R., Cleland, W. W., and Reed, G. H. (2001) Role of metal ions in catalysis by enolase: An ordered kinetic mechanism for a single substrate enzyme Biochemistry 40, 8009-8017
    • (2001) Biochemistry , vol.40 , pp. 8009-8017
    • Poyner, R.R.1    Cleland, W.W.2    Reed, G.H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.