-
8
-
-
0037422623
-
Development of geometrically exact new shell elements based on general curvilinear coordinates
-
Cho M, Roh HY. Development of geometrically exact new shell elements based on general curvilinear coordinates. International Journal for Numerical Methods in Engineering 2003; 56:81-115.
-
(2003)
International Journal For Numerical Methods In Engineering
, vol.56
, pp. 81-115
-
-
Cho, M.1
Roh, H.Y.2
-
9
-
-
0037436203
-
Non-linear strain-displacement equations exactly representing large rigid-body motions. Part I: Timoshenko-Mindlin shell theory
-
Part II: enhanced finite element technique 2006; 195:2209-2230; Part III: analysis of TM shells with constraints 2007; 196:1203-1215
-
Kulikov GM, Plotnikova SV. Non-linear strain-displacement equations exactly representing large rigid-body motions. Part I: Timoshenko-Mindlin shell theory. Computer Methods in Applied Mechanics and Engineering 2003; 192:851-875. Part II: enhanced finite element technique 2006; 195:2209-2230; Part III: analysis of TM shells with constraints 2007; 196:1203-1215.
-
(2003)
Computer Methods In Applied Mechanics and Engineering
, vol.192
, pp. 851-875
-
-
Kulikov, G.M.1
Plotnikova, S.V.2
-
10
-
-
15844391033
-
The application of geometrically exact shell elements to B-spline surfaces
-
Roh HY, Cho M. The application of geometrically exact shell elements to B-spline surfaces. Computer Methods in Applied Mechanics and Engineering 2004; 193:2261-2299.
-
(2004)
Computer Methods In Applied Mechanics and Engineering
, vol.193
, pp. 2261-2299
-
-
Roh, H.Y.1
Cho, M.2
-
11
-
-
49149128372
-
Finite rotation geometrically exact four-node solid-shell element with seven displacement degrees of freedom
-
Kulikov GM, Plotnikova SV. Finite rotation geometrically exact four-node solid-shell element with seven displacement degrees of freedom. Computer Modeling in Engineering and Sciences 2008; 28:15-38.
-
(2008)
Computer Modeling In Engineering and Sciences
, vol.28
, pp. 15-38
-
-
Kulikov, G.M.1
Plotnikova, S.V.2
-
14
-
-
33947232202
-
Non-linear geometrically exact assumed stress-strain four-node solid-shell element with high coarse-mesh accuracy
-
Kulikov GM, Plotnikova SV. Non-linear geometrically exact assumed stress-strain four-node solid-shell element with high coarse-mesh accuracy. Finite Elements in Analysis and Design 2007; 43:425-443.
-
(2007)
Finite Elements In Analysis and Design
, vol.43
, pp. 425-443
-
-
Kulikov, G.M.1
Plotnikova, S.V.2
-
16
-
-
0019610759
-
Tezduyar TE. Finite elements based upon Mindlin plate theory with particular reference to the four-node bilinear isoparametric element. Journal of Applied Mechanics
-
Hughes TJR, Tezduyar TE. Finite elements based upon Mindlin plate theory with particular reference to the four-node bilinear isoparametric element. Journal of Applied Mechanics (ASME) 1981; 48:587-596.
-
(1981)
ASME
, vol.48
, pp. 587-596
-
-
Hughes, T.J.R.1
-
17
-
-
0019574221
-
Derivation of element stiffness matrices by assumed strain distributions
-
MacNeal RH. Derivation of element stiffness matrices by assumed strain distributions. Nuclear Engineering and Design 1982; 70:3-12.
-
(1982)
Nuclear Engineering and Design
, vol.70
, pp. 3-12
-
-
Macneal, R.H.1
-
18
-
-
0022010474
-
A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation
-
Bathe KJ, Dvorkin EN. A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation. International Journal for Numerical Methods in Engineering 1985; 21:367-383.
-
(1985)
International Journal For Numerical Methods In Engineering
, vol.21
, pp. 367-383
-
-
Bathe, K.J.1
Dvorkin, E.N.2
-
21
-
-
85007692148
-
Derivation of element stiffness matrices by assumed stress distributions
-
Pian THH. Derivation of element stiffness matrices by assumed stress distributions. AIAA Journal 1964; 2:1333-1336.
-
(1964)
AIAA Journal
, vol.2
, pp. 1333-1336
-
-
Pian, T.H.H.1
-
23
-
-
0029390320
-
State-of-the-art development of hybrid/mixed finite element method
-
Pian THH. State-of-the-art development of hybrid/mixed finite element method. Finite Elements in Analysis and Design 1995; 21:5-20.
-
(1995)
Finite Elements In Analysis and Design
, vol.21
, pp. 5-20
-
-
Pian, T.H.H.1
-
24
-
-
0017916002
-
Improvement of plate and shell finite elements by mixed formulations
-
Lee SW, Pian THH. Improvement of plate and shell finite elements by mixed formulations. AIAA Journal 1978; 16:29-34.
-
(1978)
AIAA Journal
, vol.16
, pp. 29-34
-
-
Lee, S.W.1
Pian, T.H.H.2
-
26
-
-
0020101846
-
Hwang CM. A simple and efficient approximation of shells via finite quadrilateral elements. Journal of Applied Mechanics
-
Wempner G, Talaslidis D, Hwang CM. A simple and efficient approximation of shells via finite quadrilateral elements. Journal of Applied Mechanics (ASME) 1982; 49:115-120.
-
(1982)
ASME
, vol.49
, pp. 115-120
-
-
Wempner, G.1
Talaslidis, D.2
-
29
-
-
0024641220
-
On a stress resultant geometrically exact shell model. Part II: The linear theory; computational aspects
-
Simo JC, Fox DD, Rifai MC. On a stress resultant geometrically exact shell model. Part II: the linear theory; computational aspects. Computer Methods in Applied Mechanics and Engineering 1989; 73:53-92.
-
(1989)
Computer Methods In Applied Mechanics and Engineering
, vol.73
, pp. 53-92
-
-
Simo, J.C.1
Fox, D.D.2
Rifai, M.C.3
|