-
1
-
-
0004095143
-
-
edited by R. Kapral and K. Showalter (Kluwer, Dordrecht, The Netherlands
-
Chemical Waves and Patterns, edited by, R. Kapral, and, K. Showalter, (Kluwer, Dordrecht, The Netherlands, 1995).
-
(1995)
Chemical Waves and Patterns
-
-
-
7
-
-
38949097584
-
-
10.1103/PhysRevE.77.026103
-
D. Napoletani and T. D. Sauer, Phys. Rev. E 77, 026103 (2008). 10.1103/PhysRevE.77.026103
-
(2008)
Phys. Rev. e
, vol.77
, pp. 026103
-
-
Napoletani, D.1
Sauer, T.D.2
-
8
-
-
0038048325
-
-
10.1126/science.1081900
-
T. S. Gardner, D. di Bernardo, D. Lorenz, and J. J. Collins, Science 301, 102 (2003). 10.1126/science.1081900
-
(2003)
Science
, vol.301
, pp. 102
-
-
Gardner, T.S.1
Di Bernardo, D.2
Lorenz, D.3
Collins, J.J.4
-
9
-
-
0036789922
-
-
10.1073/pnas.192442699
-
B. N. Kholodenko, A. Kiyatkin, F. J. Bruggeman, E. Sontag, H. V. Westerhoff, and J. B. Hoek, Proc. Natl. Acad. Sci. U.S.A. 99, 12841 (2002). 10.1073/pnas.192442699
-
(2002)
Proc. Natl. Acad. Sci. U.S.A.
, vol.99
, pp. 12841
-
-
Kholodenko, B.N.1
Kiyatkin, A.2
Bruggeman, F.J.3
Sontag, E.4
Westerhoff, H.V.5
Hoek, J.B.6
-
10
-
-
34547245559
-
-
10.1103/PhysRevLett.98.224101
-
M. Timme, Phys. Rev. Lett. 98, 224101 (2007). 10.1103/PhysRevLett.98. 224101
-
(2007)
Phys. Rev. Lett.
, vol.98
, pp. 224101
-
-
Timme, M.1
-
11
-
-
0000896054
-
-
10.1103/PhysRevE.61.3736
-
L. Junge and U. Parlitz, Phys. Rev. E 61, 3736 (2000). 10.1103/PhysRevE.61.3736
-
(2000)
Phys. Rev. e
, vol.61
, pp. 3736
-
-
Junge, L.1
Parlitz, U.2
-
16
-
-
1642385112
-
-
10.1016/j.tins.2004.02.007
-
G. Buzsáki, C. Geisler, D. A. Henze, and X.-J. Wang, Trends Neurosci. 27, 186 (2004). 10.1016/j.tins.2004.02.007
-
(2004)
Trends Neurosci.
, vol.27
, pp. 186
-
-
Buzsáki, G.1
Geisler, C.2
Henze, D.A.3
Wang, X.-J.4
-
18
-
-
48849084915
-
-
10.1103/PhysRevE.78.011922
-
W. D. Kepseu and P. Woafo, Phys. Rev. E 78, 011922 (2008). 10.1103/PhysRevE.78.011922
-
(2008)
Phys. Rev. e
, vol.78
, pp. 011922
-
-
Kepseu, W.D.1
Woafo, P.2
-
19
-
-
42949178991
-
-
10.1103/PhysRevE.77.042902
-
H. Sakaguchi and P. Woafo, Phys. Rev. E 77, 042902 (2008). 10.1103/PhysRevE.77.042902
-
(2008)
Phys. Rev. e
, vol.77
, pp. 042902
-
-
Sakaguchi, H.1
Woafo, P.2
-
21
-
-
0036563145
-
-
10.1103/PhysRevE.65.055204
-
D. He, G. Hu, M. Zhan, W. Ren, and Z. Gao, Phys. Rev. E 65, 055204 (2002). 10.1103/PhysRevE.65.055204
-
(2002)
Phys. Rev. e
, vol.65
, pp. 055204
-
-
He, D.1
Hu, G.2
Zhan, M.3
Ren, W.4
Gao, Z.5
-
22
-
-
37649026712
-
-
10.1103/PhysRevE.69.056223
-
X. Wang, Y. Lu, M. Jiang, and Q. Ouyang, Phys. Rev. E 69, 056223 (2004). 10.1103/PhysRevE.69.056223
-
(2004)
Phys. Rev. e
, vol.69
, pp. 056223
-
-
Wang, X.1
Lu, Y.2
Jiang, M.3
Ouyang, Q.4
-
27
-
-
77956118850
-
-
http://www.scholarpedia.org/article/Method-of-lines
-
-
-
-
31
-
-
34250315551
-
-
10.1016/0375-9601(92)90745-8
-
K. Pyragas, Phys. Lett. A 170, 421 (1992). 10.1016/0375-9601(92)90745-8
-
(1992)
Phys. Lett. A
, vol.170
, pp. 421
-
-
Pyragas, K.1
-
32
-
-
42749107292
-
-
10.1103/PhysRevLett.93.264101
-
A. Ahlborn and U. Parlitz, Phys. Rev. Lett. 93, 264101 (2004). 10.1103/PhysRevLett.93.264101
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 264101
-
-
Ahlborn, A.1
Parlitz, U.2
-
33
-
-
77956100643
-
-
Here and hereafter the distance between two point sets is equal to the minimal distance between any two points which are taken from different sets.
-
Here and hereafter the distance between two point sets is equal to the minimal distance between any two points which are taken from different sets.
-
-
-
-
34
-
-
77956109022
-
-
We suggest here only a five-point Laplacian approximation. One could also use a higher order one (e.g., nine-point Laplacian operator).
-
We suggest here only a five-point Laplacian approximation. One could also use a higher order one (e.g., nine-point Laplacian operator).
-
-
-
-
35
-
-
77956098738
-
-
If only Γ is unknown, then one may follow the methods introduced in Sec. for estimating the value of Γ.
-
If only Γ is unknown, then one may follow the methods introduced in Sec. for estimating the value of Γ.
-
-
-
-
36
-
-
77956105002
-
-
In practice, one can first choose a small gain θ and then increase θ gradually until the distance between the sets I0 and I1 is larger than the maximal value of set I0 and thus the sets I0 and I1 are distinguishable. In this way, one may determine the critical value θc.
-
In practice, one can first choose a small gain θ and then increase θ gradually until the distance between the sets I 0 and I 1 is larger than the maximal value of set I 0 and thus the sets I 0 and I 1 are distinguishable. In this way, one may determine the critical value θ c.
-
-
-
|