메뉴 건너뛰기




Volumn 82, Issue 2, 2010, Pages

Inferring local dynamics and connectivity of spatially extended systems with long-range links based on steady-state stabilization

Author keywords

[No Author keywords available]

Indexed keywords

FITZHUGH-NAGUMO MODEL; IDENTIFICATION PROCEDURE; LOCAL DYNAMICS; LONG-RANGE LINKS; SPATIALLY EXTENDED SYSTEMS; STRUCTURAL INHOMOGENEITIES; SYSTEM IDENTIFICATIONS;

EID: 77956097637     PISSN: 15393755     EISSN: 15502376     Source Type: Journal    
DOI: 10.1103/PhysRevE.82.026108     Document Type: Article
Times cited : (21)

References (36)
  • 1
    • 0004095143 scopus 로고
    • edited by R. Kapral and K. Showalter (Kluwer, Dordrecht, The Netherlands
    • Chemical Waves and Patterns, edited by, R. Kapral, and, K. Showalter, (Kluwer, Dordrecht, The Netherlands, 1995).
    • (1995) Chemical Waves and Patterns
  • 7
    • 38949097584 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.77.026103
    • D. Napoletani and T. D. Sauer, Phys. Rev. E 77, 026103 (2008). 10.1103/PhysRevE.77.026103
    • (2008) Phys. Rev. e , vol.77 , pp. 026103
    • Napoletani, D.1    Sauer, T.D.2
  • 10
    • 34547245559 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.98.224101
    • M. Timme, Phys. Rev. Lett. 98, 224101 (2007). 10.1103/PhysRevLett.98. 224101
    • (2007) Phys. Rev. Lett. , vol.98 , pp. 224101
    • Timme, M.1
  • 11
    • 0000896054 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.61.3736
    • L. Junge and U. Parlitz, Phys. Rev. E 61, 3736 (2000). 10.1103/PhysRevE.61.3736
    • (2000) Phys. Rev. e , vol.61 , pp. 3736
    • Junge, L.1    Parlitz, U.2
  • 13
    • 36048986948 scopus 로고    scopus 로고
    • 10.1016/j.physleta.2007.06.059
    • G. S. Duane, D. Yu, and L. Kocarev, Phys. Lett. A 371, 416 (2007). 10.1016/j.physleta.2007.06.059
    • (2007) Phys. Lett. A , vol.371 , pp. 416
    • Duane, G.S.1    Yu, D.2    Kocarev, L.3
  • 18
    • 48849084915 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.78.011922
    • W. D. Kepseu and P. Woafo, Phys. Rev. E 78, 011922 (2008). 10.1103/PhysRevE.78.011922
    • (2008) Phys. Rev. e , vol.78 , pp. 011922
    • Kepseu, W.D.1    Woafo, P.2
  • 19
    • 42949178991 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.77.042902
    • H. Sakaguchi and P. Woafo, Phys. Rev. E 77, 042902 (2008). 10.1103/PhysRevE.77.042902
    • (2008) Phys. Rev. e , vol.77 , pp. 042902
    • Sakaguchi, H.1    Woafo, P.2
  • 27
    • 77956118850 scopus 로고    scopus 로고
    • http://www.scholarpedia.org/article/Method-of-lines
  • 31
    • 34250315551 scopus 로고
    • 10.1016/0375-9601(92)90745-8
    • K. Pyragas, Phys. Lett. A 170, 421 (1992). 10.1016/0375-9601(92)90745-8
    • (1992) Phys. Lett. A , vol.170 , pp. 421
    • Pyragas, K.1
  • 32
    • 42749107292 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.93.264101
    • A. Ahlborn and U. Parlitz, Phys. Rev. Lett. 93, 264101 (2004). 10.1103/PhysRevLett.93.264101
    • (2004) Phys. Rev. Lett. , vol.93 , pp. 264101
    • Ahlborn, A.1    Parlitz, U.2
  • 33
    • 77956100643 scopus 로고    scopus 로고
    • Here and hereafter the distance between two point sets is equal to the minimal distance between any two points which are taken from different sets.
    • Here and hereafter the distance between two point sets is equal to the minimal distance between any two points which are taken from different sets.
  • 34
    • 77956109022 scopus 로고    scopus 로고
    • We suggest here only a five-point Laplacian approximation. One could also use a higher order one (e.g., nine-point Laplacian operator).
    • We suggest here only a five-point Laplacian approximation. One could also use a higher order one (e.g., nine-point Laplacian operator).
  • 35
    • 77956098738 scopus 로고    scopus 로고
    • If only Γ is unknown, then one may follow the methods introduced in Sec. for estimating the value of Γ.
    • If only Γ is unknown, then one may follow the methods introduced in Sec. for estimating the value of Γ.
  • 36
    • 77956105002 scopus 로고    scopus 로고
    • In practice, one can first choose a small gain θ and then increase θ gradually until the distance between the sets I0 and I1 is larger than the maximal value of set I0 and thus the sets I0 and I1 are distinguishable. In this way, one may determine the critical value θc.
    • In practice, one can first choose a small gain θ and then increase θ gradually until the distance between the sets I 0 and I 1 is larger than the maximal value of set I 0 and thus the sets I 0 and I 1 are distinguishable. In this way, one may determine the critical value θ c.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.