-
4
-
-
0000968779
-
-
U. Parlitz, L. Kocarev, T. Stojanovski, and H. Preckel, Phys. Rev. E 53, 4351 (1996)
-
(1996)
Phys. Rev. E
, vol.53
, pp. 4351
-
-
Parlitz, U.1
Kocarev, L.2
Stojanovski, T.3
Preckel, H.4
-
5
-
-
0003255519
-
-
N. Rulkov, Chaos 6, 262 (1996)
-
(1996)
Chaos
, vol.6
, pp. 262
-
-
Rulkov, N.1
-
6
-
-
22244479695
-
-
U. Parlitz, L. Kocarev, T. Stojanovski, and L. Junge, Physica D 109, 139 (1997).
-
(1997)
Physica D
, vol.109
, pp. 139
-
-
Parlitz, U.1
Kocarev, L.2
Stojanovski, T.3
Junge, L.4
-
8
-
-
0029531323
-
-
R. Caponetto, L. Fortuna, G. Manganaro, and M. Xibilia, Proc. SPIE 2612, 48 (1995)
-
(1995)
Proc. SPIE
, vol.2612
, pp. 48
-
-
Caponetto, R.1
Fortuna, L.2
Manganaro, G.3
Xibilia, M.4
-
14
-
-
0040050906
-
-
L. Kocarev, Z. Tasev, T. Stojanovski, and U. Parlitz, Chaos 7, 635 (1997)
-
(1997)
Chaos
, vol.7
, pp. 635
-
-
Kocarev, L.1
Tasev, Z.2
Stojanovski, T.3
Parlitz, U.4
-
17
-
-
85036155938
-
-
We want to remark that the numerical solution of PDE’s often yields a CML and one might believe that the pinning schemes can be applied to this numerical CML. But this is possible then only due to the numerical discretization and there is no physical justification for this. Moreover, the pinning coupling will depend on the discretization scheme, grid size, etc. The coupling with local spatial averages (sensors) introduced in Refs. 78 does not suffer from such artifacts
-
We want to remark that the numerical solution of PDE’s often yields a CML and one might believe that the pinning schemes can be applied to this numerical CML. But this is possible then only due to the numerical discretization and there is no physical justification for this. Moreover, the pinning coupling will depend on the discretization scheme, grid size, etc. The coupling with local spatial averages (sensors) introduced in Refs. 78 does not suffer from such artifacts.
-
-
-
-
18
-
-
85036214038
-
-
Int. J. Bifuraction Chaos, Appl. Sci. Eng. (to be published)
-
Z. Tasev, L. Junge, U. Parlitz, and L. Kocarev, Int. J. Bifuraction Chaos, Appl. Sci. Eng. (to be published).
-
-
-
Tasev, Z.1
Junge, L.2
Parlitz, U.3
Kocarev, L.4
-
19
-
-
0033475307
-
-
L. Junge, U. Parlitz, Z. Tasev, and L. Kocarev, Int. J. Bifuraction Chaos Appl. Sci. Eng. 9, 2265 (1999).
-
(1999)
Int. J. Bifuraction Chaos Appl. Sci. Eng.
, vol.9
, pp. 2265
-
-
Junge, L.1
Parlitz, U.2
Tasev, Z.3
Kocarev, L.4
-
20
-
-
33744833457
-
-
N. Rulkov, M. Sushchik, L. Tsimring, and H. Abarbanel, Phys. Rev. E 51, 980 (1995)
-
(1995)
Phys. Rev. E
, vol.51
, pp. 980
-
-
Rulkov, N.1
Sushchik, M.2
Tsimring, L.3
Abarbanel, H.4
-
23
-
-
0000272882
-
-
U. Parlitz, L. Junge, W. Lauterborn, and L. Kocarev, Phys. Rev. E 54, 2115 (1996)
-
(1996)
Phys. Rev. E
, vol.54
, pp. 2115
-
-
Parlitz, U.1
Junge, L.2
Lauterborn, W.3
Kocarev, L.4
-
24
-
-
0000655970
-
-
Phys. Rev. EG. Osipov, A. Pikovsky, M. Rosenblum, and J. Kurths, 55, 2353 (1997)
-
(1997)
Phys. Rev. E
, vol.55
, pp. 2353
-
-
Osipov, G.1
Pikovsky, A.2
Rosenblum, M.3
Kurths, J.4
-
26
-
-
85036158833
-
-
this paper we restrict ourselves to one-dimensional PDE’s, but the coupling scheme 78 introduced below can also be applied to higher dimensional PDE’s
-
In this paper we restrict ourselves to one-dimensional PDE’s, but the coupling scheme 78 introduced below can also be applied to higher dimensional PDE’s.
-
-
-
-
28
-
-
85036185138
-
-
M. Sushchik, Ph.D. dissertation, University of Califorinia, San Diego, 1996
-
M. Sushchik, Ph.D. dissertation, University of Califorinia, San Diego, 1996.
-
-
-
-
32
-
-
0003474751
-
-
Cambridge University Press, Cambridge
-
W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge University Press, Cambridge, 1994).
-
(1994)
Numerical Recipes in C, 2nd ed.
-
-
Press, W.1
Teukolsky, S.2
Vetterling, W.3
Flannery, B.4
-
33
-
-
0000857725
-
-
The existence of an attractor for the Ginzburg-Landau equation was shown by A. Mielke, Nonlinearity 10, 199 (1997).
-
(1997)
Nonlinearity
, vol.10
, pp. 199
-
-
Mielke, A.1
-
34
-
-
85036204377
-
-
The remaining additive constants for both lines are of the order of 1. We calculated the slopes for system lengths (Formula presented) and therefore the constants can be neglected in the relations for (Formula presented) and N
-
The remaining additive constants for both lines are of the order of 1. We calculated the slopes for system lengths (Formula presented) and therefore the constants can be neglected in the relations for (Formula presented) and N.
-
-
-
-
35
-
-
85036326668
-
-
The fluctuation of (Formula presented) for large widths l are related to the jumps that occur when the number N of coupling signals increases while increasing the system length L. This effect disappears when the width l is much smaller than L. For example, the jump in (Formula presented) by incrementing N is still (Formula presented) for a width of (Formula presented) and a length of (Formula presented)
-
The fluctuation of (Formula presented) for large widths l are related to the jumps that occur when the number N of coupling signals increases while increasing the system length L. This effect disappears when the width l is much smaller than L. For example, the jump in (Formula presented) by incrementing N is still (Formula presented) for a width of (Formula presented) and a length of (Formula presented)
-
-
-
-
36
-
-
85036243417
-
-
e-print xxx.lanl.gov/abs/chao-dyn/9811002
-
J. Goodwin, R. Brown, and L. Junge, e-print xxx.lanl.gov/abs/chao-dyn/9811002.
-
-
-
Goodwin, J.1
Brown, R.2
Junge, L.3
|