메뉴 건너뛰기




Volumn 2, Issue 1, 2009, Pages 133-144

Using trees to depict a forest

Author keywords

[No Author keywords available]

Indexed keywords

DATABASE SYSTEMS;

EID: 77956032497     PISSN: None     EISSN: 21508097     Source Type: Conference Proceeding    
DOI: 10.14778/1687627.1687643     Document Type: Article
Times cited : (32)

References (34)
  • 1
    • 85039687071 scopus 로고    scopus 로고
    • Database usability research at university of michigan
    • Database usability research at university of michigan. http://www.eecs.umich.edu/db/usable/.
  • 2
    • 33750367864 scopus 로고    scopus 로고
    • Learning user interaction models for predicting web search result preferences
    • E. Agichtein, E. Brill, S. T. Dumais, and R. Ragno. Learning user interaction models for predicting web search result preferences. In SIGIR, pages 3-10, 2006.
    • (2006) SIGIR , pp. 3-10
    • Agichtein, E.1    Brill, E.2    Dumais, S.T.3    Ragno, R.4
  • 3
    • 0032090765 scopus 로고    scopus 로고
    • Automatic subspace clustering of high dimensional data for data mining applications
    • R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. In SIGMOD Conference, pages 94-105, 1998.
    • (1998) SIGMOD Conference , pp. 94-105
    • Agrawal, R.1    Gehrke, J.2    Gunopulos, D.3    Raghavan, P.4
  • 4
    • 33749260356 scopus 로고    scopus 로고
    • Cover trees for nearest neighbor
    • A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for nearest neighbor. In ICML, pages 97-104, 2006.
    • (2006) ICML , pp. 97-104
    • Beygelzimer, A.1    Kakade, S.2    Langford, J.3
  • 5
    • 33750181508 scopus 로고    scopus 로고
    • Probabilistic information retrieval approach for ranking of database query results
    • S. Chaudhuri, G. Das, V. Hristidis, and G. Weikum. Probabilistic information retrieval approach for ranking of database query results. ACM Trans. Database Syst., 31(3):1134-1168, 2006.
    • (2006) ACM Trans. Database Syst , vol.31 , Issue.3 , pp. 1134-1168
    • Chaudhuri, S.1    Das, G.2    Hristidis, V.3    Weikum, G.4
  • 7
    • 85170282443 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial databases with noise
    • 1996
    • M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. In KDD, pages 226-231, 1996.
    • (1996) KDD , pp. 226-231
    • Ester, M.1    Kriegel, H-P.2    Sander, J.3    Xu, X.4
  • 8
    • 84957712272 scopus 로고
    • Knowledge discovery in large spatial databases: Focusing techniques for efficient class identification
    • 1995
    • M. Ester, H.-P. Kriegel, and X. Xu. Knowledge discovery in large spatial databases: Focusing techniques for efficient class identification. In SSD, pages 67-82, 1995.
    • (1995) SSD , pp. 67-82
    • Ester, M.1    Kriegel, H-P.2    Xu, X.3
  • 9
    • 0034819889 scopus 로고    scopus 로고
    • Optimal aggregation algorithms for middleware
    • R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware. In PODS, 2001.
    • (2001) PODS
    • Fagin, R.1    Lotem, A.2    Naor, M.3
  • 11
    • 0032091595 scopus 로고    scopus 로고
    • Cure: An efficient clustering algorithm for large databases
    • S. Guha, R. Rastogi, and K. Shim. Cure: An efficient clustering algorithm for large databases. In SIGMOD Conference, pages 73-84, 1998.
    • (1998) SIGMOD Conference , pp. 73-84
    • Guha, S.1    Rastogi, R.2    Shim, K.3
  • 12
    • 85011072071 scopus 로고    scopus 로고
    • Efficiently answering top-k typicality queries on large databases
    • M. Hua, J. Pei, A. W.-C. Fu, X. Lin, and H. fung Leung. Efficiently answering top-k typicality queries on large databases. In VLDB, pages 890-901, 2007.
    • (2007) VLDB , pp. 890-901
    • Hua, M.1    Pei, J.2    Fu, A.W-C.3    Lin, X.4    Fung Leung, H.5
  • 13
    • 23744485775 scopus 로고    scopus 로고
    • How are we searching the world wide web? a comparison of nine search engine transaction logs
    • B. J. Jansen and A. Spink. How are we searching the world wide web? a comparison of nine search engine transaction logs. Inf. Process. Manage., 42(1):248-263, 2006.
    • (2006) Inf. Process. Manage , vol.42 , Issue.1 , pp. 248-263
    • Jansen, B.J.1    Spink, A.2
  • 16
    • 35448944026 scopus 로고    scopus 로고
    • Supporting ranking and clustering as generalized order-by and group-by
    • C. Li, M. Wang, L. Lim, H. Wang, and K. C.-C. Chang. Supporting ranking and clustering as generalized order-by and group-by. In SIGMOD Conference, pages 127-138, 2007.
    • (2007) SIGMOD Conference , pp. 127-138
    • Li, C.1    Wang, M.2    Lim, L.3    Wang, H.4    Chang, K.C-C.5
  • 17
    • 67649651679 scopus 로고    scopus 로고
    • A spreadsheet algebra for a direct data manipulation query interface
    • B. Liu and H. Jagadish. A spreadsheet algebra for a direct data manipulation query interface. In ICDE, 2009.
    • (2009) ICDE
    • Liu, B.1    Jagadish, H.2
  • 19
    • 0035049112 scopus 로고    scopus 로고
    • Analysis of the clustering properties of the hilbert space-filling curve
    • B. Moon, H. V. Jagadish, C. Faloutsos, and J. H. Saltz. Analysis of the clustering properties of the hilbert space-filling curve. IEEE Trans. Knowl. Data Eng., 13(1):124-141, 2001.
    • (2001) IEEE Trans. Knowl. Data Eng , vol.13 , Issue.1 , pp. 124-141
    • Moon, B.1    Jagadish, H.V.2    Faloutsos, C.3    Saltz, J.H.4
  • 20
    • 34147150621 scopus 로고    scopus 로고
    • A generalized k-means algorithm with semi-supervised weight coefficients
    • 2006
    • F. Morii. A generalized k-means algorithm with semi-supervised weight coefficients. In ICPR (3), pages 198-201, 2006.
    • (2006) ICPR (3) , pp. 198-201
    • Morii, F.1
  • 21
    • 26444560895 scopus 로고    scopus 로고
    • Medoid queries in large spatial databases
    • K. Mouratidis, D. Papadias, and S. Papadimitriou. Medoid queries in large spatial databases. In SSTD, pages 55-72, 2005.
    • (2005) SSTD , pp. 55-72
    • Mouratidis, K.1    Papadias, D.2    Papadimitriou, S.3
  • 22
    • 45749143113 scopus 로고    scopus 로고
    • Tree-based partition querying: a methodology for computing medoids in large spatial datasets
    • K. Mouratidis, D. Papadias, and S. Papadimitriou. Tree-based partition querying: a methodology for computing medoids in large spatial datasets. VLDB J., 17(4):923-945, 2008.
    • (2008) VLDB J. , vol.17 , Issue.4 , pp. 923-945
    • Mouratidis, K.1    Papadias, D.2    Papadimitriou, S.3
  • 23
    • 0036709106 scopus 로고    scopus 로고
    • Clarans: A method for clustering objects for spatial data mining
    • R. T. Ng and J. Han. Clarans: A method for clustering objects for spatial data mining. IEEE Trans. on Knowl. and Data Eng., 14(5):1003-1016, 2002.
    • (2002) IEEE Trans. on Knowl. and Data Eng. , vol.14 , Issue.5 , pp. 1003-1016
    • Ng, R.T.1    Han, J.2
  • 24
    • 0036728612 scopus 로고    scopus 로고
    • Exemplar and prototype models revisited: Response strategies, selective attention, and stimulus generalization
    • R. Nosofsky and S. Zaki. Exemplar and prototype models revisited: Response strategies, selective attention, and stimulus generalization. Learning, Memory, 28(5):924-940, 2002.
    • (2002) Learning, Memory , vol.28 , Issue.5 , pp. 924-940
    • Nosofsky, R.1    Zaki, S.2
  • 25
    • 0040438433 scopus 로고    scopus 로고
    • Density biased sampling: An improved method for data mining and clustering
    • C. R. Palmer and C. Faloutsos. Density biased sampling: An improved method for data mining and clustering. In SIGMOD Conference, pages 82-92, 2000.
    • (2000) SIGMOD Conference , pp. 82-92
    • Palmer, C.R.1    Faloutsos, C.2
  • 26
    • 34548551173 scopus 로고    scopus 로고
    • Finding representative set from massive data
    • F. Pan, W. Wang, A. K. H. Tung, and J. Yang. Finding representative set from massive data. In ICDM, pages 338-345, 2005.
    • (2005) ICDM , pp. 338-345
    • Pan, F.1    Wang, W.2    Tung, A.K.H.3    Yang, J.4
  • 27
    • 17044376078 scopus 로고    scopus 로고
    • Subspace clustering for high dimensional data: a review
    • L. Parsons, E. Haque, and H. Liu. Subspace clustering for high dimensional data: a review. ACM SIGKDD Explorations Newsletter, 6(1):90-105, 2004.
    • (2004) ACM SIGKDD Explorations Newsletter , vol.6 , Issue.1 , pp. 90-105
    • Parsons, L.1    Haque, E.2    Liu, H.3
  • 28
    • 0026915783 scopus 로고
    • Similarity-scaling studies of dot-pattern classification and recognition
    • H. Shin and R. Nosofsky. Similarity-scaling studies of dot-pattern classification and recognition. Journal of Experimental Psychology: General, 121(3):278-304, 1992.
    • (1992) Journal of Experimental Psychology: General , vol.121 , Issue.3 , pp. 278-304
    • Shin, H.1    Nosofsky, R.2
  • 29
    • 0020799406 scopus 로고
    • Direct manipulation: a step beyond programming languages
    • B. Shneiderman. Direct manipulation: a step beyond programming languages. IEEE Computer, 16(8):57-69, 1983.
    • (1983) IEEE Computer , vol.16 , Issue.8 , pp. 57-69
    • Shneiderman, B.1
  • 30
    • 0032335077 scopus 로고    scopus 로고
    • Prototypes in the mist: The early epochs of category learning
    • J. Smith and J. Minda. Prototypes in the mist: The early epochs of category learning. Learning, Memory, 24(6):1411-1436, 1998.
    • (1998) Learning, Memory , vol.24 , Issue.6 , pp. 1411-1436
    • Smith, J.1    Minda, J.2
  • 32
    • 85011032473 scopus 로고    scopus 로고
    • Datascope: Viewing database contents in google maps' way
    • T. Wu, X. Li, D. Xin, J. Han, J. Lee, and R. Redder. Datascope: Viewing database contents in google maps' way. In VLDB, pages 1314-1317, 2007.
    • (2007) VLDB , pp. 1314-1317
    • Wu, T.1    Li, X.2    Xin, D.3    Han, J.4    Lee, J.5    Redder, R.6
  • 34
    • 0030157145 scopus 로고    scopus 로고
    • Birch: An efficient data clustering method for very large databases
    • T. Zhang, R. Ramakrishnan, and M. Livny. Birch: An efficient data clustering method for very large databases. In SIGMOD Conference, pages 103-114,1996.
    • (1996) SIGMOD Conference , pp. 103-114
    • Zhang, T.1    Ramakrishnan, R.2    Livny, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.