메뉴 건너뛰기




Volumn , Issue , 2010, Pages 3145-3152

Learning kernels for variants of normalized cuts: Convex relaxations and applications

Author keywords

[No Author keywords available]

Indexed keywords

BASIS SETS; BRAIN IMAGING; CONVEX RELAXATION; DATA SETS; FEATURE TYPES; KERNEL WEIGHT; LEARNING KERNELS; LEARNING PROBLEM; NORMALIZED CUTS; OPTIMALITY; PROBLEM SIZE; QUALITY OF SOLUTION; SALIENT FEATURES; SDP RELAXATION; SIMILARITY FUNCTIONS; TRAINING EXAMPLE; TRAINING SETS;

EID: 77956000518     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2010.5540076     Document Type: Conference Paper
Times cited : (8)

References (30)
  • 8
    • 84858766876 scopus 로고    scopus 로고
    • Exploring large feature spaces with hierarchical multiple kernel learning
    • F. R. Bach. Exploring large feature spaces with hierarchical multiple kernel learning. In Neural Inf. Processing Syst., 2009.
    • (2009) Neural Inf. Processing Syst.
    • Bach, F.R.1
  • 15
    • 33749317042 scopus 로고    scopus 로고
    • Learning spectral clustering, with application to speech separation
    • F. R. Bach and M. I. Jordan. Learning spectral clustering, with application to speech separation. Journal of Machine Learning Research, 7:1963-2001, 2006.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1963-2001
    • Bach, F.R.1    Jordan, M.I.2
  • 18
    • 77949873168 scopus 로고    scopus 로고
    • Polynomial time algorithms for ratio regions and a variant of normalized cut
    • D. S. Hochbaum. Polynomial time algorithms for ratio regions and a variant of normalized cut. Trans. on Pattern Analysis and Machine Intell., 32:889-898, 2010.
    • (2010) Trans. on Pattern Analysis and Machine Intell. , vol.32 , pp. 889-898
    • Hochbaum, D.S.1
  • 19
    • 33747472134 scopus 로고    scopus 로고
    • Hierarchy and adaptivity in segmenting visual scenes
    • E. Sharon, M. Galun, D. Sharon, R. Basri, and A. Brandt. Hierarchy and adaptivity in segmenting visual scenes. Nature, 442:810-813, 2006.
    • (2006) Nature , vol.442 , pp. 810-813
    • Sharon, E.1    Galun, M.2    Sharon, D.3    Basri, R.4    Brandt, A.5
  • 20
    • 0038487301 scopus 로고    scopus 로고
    • Fractional programming: The sum-of-ratios case
    • S. Schaible and J. Shi. Fractional programming: the sum-of-ratios case. Optim. Met. & Soft., 18:219-229, 2003.
    • (2003) Optim. Met. & Soft. , vol.18 , pp. 219-229
    • Schaible, S.1    Shi, J.2
  • 21
    • 0000261286 scopus 로고
    • Programming with linear fractional functionals
    • A. Charnes and W. W. Cooper. Programming with linear fractional functionals. Naval Research Logistics Quarterly, 9(3-4):181-186, 1962.
    • (1962) Naval Research Logistics Quarterly , vol.9 , Issue.3-4 , pp. 181-186
    • Charnes, A.1    Cooper, W.W.2
  • 22
    • 70450208141 scopus 로고    scopus 로고
    • Continuous ratio optimization via convex relaxation with applications to multiview 3D reconstruction
    • K. Kolev and D. Cremers. Continuous ratio optimization via convex relaxation with applications to multiview 3D reconstruction. In Computer Vision and Pattern Recog., 2009.
    • (2009) Computer Vision and Pattern Recog.
    • Kolev, K.1    Cremers, D.2
  • 23
    • 31244435061 scopus 로고    scopus 로고
    • Solving standard quadratic optimization problems via linear, semidefinite and copositive programming
    • I. M. Bomze and E. De Klerk. Solving standard quadratic optimization problems via linear, semidefinite and copositive programming. J. Global Optim., 24(2):163-185, 2002.
    • (2002) J. Global Optim. , vol.24 , Issue.2 , pp. 163-185
    • Bomze, I.M.1    De Klerk, E.2
  • 25
    • 0023452095 scopus 로고
    • Some NP-complete problems in quadratic and nonlinear programming
    • K. G. Murty and S. N. Kabadi. Some NP-complete problems in quadratic and nonlinear programming. Math. Programming, 39(1):117-129, 1987.
    • (1987) Math. Programming , vol.39 , Issue.1 , pp. 117-129
    • Murty, K.G.1    Kabadi, S.N.2
  • 26
    • 43949093438 scopus 로고    scopus 로고
    • New and old bounds for standard quadratic optimization: Dominance, equivalence and incomparability
    • M. Locatelli I.M. Bomze and F. Tardella. New and old bounds for standard quadratic optimization: dominance, equivalence and incomparability. Math. Programming, 115(1):31-63, 2008.
    • (2008) Math. Programming , vol.115 , Issue.1 , pp. 31-63
    • Locatelli, M.1    Bomze, I.M.2    Tardella, F.3
  • 27
    • 0002376103 scopus 로고    scopus 로고
    • A new semidefinite programming bound for indefinite quadratic forms over a simplex
    • I. Nowak. A new semidefinite programming bound for indefinite quadratic forms over a simplex. J. Global Optim., 14(4):357-364, 1999.
    • (1999) J. Global Optim. , vol.14 , Issue.4 , pp. 357-364
    • Nowak, I.1
  • 28
    • 85075958051 scopus 로고    scopus 로고
    • Generalized maximum margin clustering and unsupervised kernel learning
    • H. Valizadegan and R. Jin. Generalized maximum margin clustering and unsupervised kernel learning. In Neural Inf. Processing Syst., 2006.
    • (2006) Neural Inf. Processing Syst.
    • Valizadegan, H.1    Jin, R.2
  • 30
    • 84932617705 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories
    • L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. In Computer Vision and Pattern Recog. Workshop, 2004.
    • Computer Vision and Pattern Recog. Workshop, 2004
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.