메뉴 건너뛰기




Volumn , Issue , 2010, Pages 1945-1951

Towards automated selection of estimation of distribution algorithms

Author keywords

Automated selection of EDAs; Estimation of distribution algorithms; Parameter control

Indexed keywords

AUTOMATED SELECTION; ESTIMATION OF DISTRIBUTION ALGORITHMS; PARAMETER CONTROL; RESEARCH DIRECTIONS;

EID: 77955944949     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1830761.1830831     Document Type: Conference Paper
Times cited : (4)

References (32)
  • 1
    • 0003984832 scopus 로고
    • Population-based incremental learning: A method for integrating genetic search based function optimization and competitive learning
    • Carnegie Mellon University, Pittsburgh, PA
    • S. Baluja. Population-based incremental learning: A method for integrating genetic search based function optimization and competitive learning. Tech. Rep. No. CMU-CS-94-163, Carnegie Mellon University, Pittsburgh, PA, 1994.
    • (1994) Tech. Rep. No. CMU-CS-94-163
    • Baluja, S.1
  • 2
    • 0001955592 scopus 로고    scopus 로고
    • Using optimal dependency-trees for combinatorial optimization: Learning the structure of the search space
    • Morgan Kaufman
    • S. Baluja and S. Davies. Using optimal dependency-trees for combinatorial optimization: Learning the structure of the search space. In Proceedings of the 14th International Conference on Machine Learning, pages 30-38. Morgan Kaufman, 1997.
    • (1997) Proceedings of the 14th International Conference on Machine Learning , pp. 30-38
    • Baluja, S.1    Davies, S.2
  • 3
    • 3042708858 scopus 로고    scopus 로고
    • Hyper-heuristics: An emerging direction in modern search technology
    • F. Glover and G. Kochenberger, editors Kluwer
    • E. K. Burke, E. Hart, G. Kendall, J. Newall, P. Ross, and S. Schulenburg. Hyper-heuristics: An emerging direction in modern search technology. In F. Glover and G. Kochenberger, editors, Handbook of Meta-Heuristics, pages 457-474. Kluwer, 2003.
    • (2003) Handbook of Meta-Heuristics , pp. 457-474
    • Burke, E.K.1    Hart, E.2    Kendall, G.3    Newall, J.4    Ross, P.5    Schulenburg, S.6
  • 5
    • 78049265488 scopus 로고    scopus 로고
    • MIMIC: Finding optima by estimating probability densities
    • M. C. Mozer, M. I. Jordan, and T. Petsche, editors The MIT Press, Cambridge
    • J. S. De Bonet, C. L. Isbell, and P. Viola. MIMIC: Finding optima by estimating probability densities. In M. C. Mozer, M. I. Jordan, and T. Petsche, editors, Advances in Neural Information Processing Systems, volume 9, pages 424-430. The MIT Press, Cambridge, 1997.
    • (1997) Advances in Neural Information Processing Systems , vol.9 , pp. 424-430
    • De Bonet, J.S.1    Isbell, C.L.2    Viola, P.3
  • 7
    • 0002307386 scopus 로고    scopus 로고
    • Global optimization using Bayesian networks
    • A. A. O. Rodriguez et al., editors Habana, Cuba
    • R. Etxeberria and P. Larrañaga. Global optimization using Bayesian networks. In A. A. O. Rodriguez et al., editors, Second Symposium on Artificial Intelligence (CIMAF-99), pages 332-339, Habana, Cuba, 1999.
    • (1999) Second Symposium on Artificial Intelligence (CIMAF-99) , pp. 332-339
    • Etxeberria, R.1    Larrañaga, P.2
  • 9
    • 0003738581 scopus 로고    scopus 로고
    • Linkage learning via probabilistic modeling in the ECGA
    • Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL
    • G. R. Harik. Linkage learning via probabilistic modeling in the ECGA. IlliGAL Report No. 99010, Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 1999.
    • (1999) IlliGAL Report No. 99010
    • Harik, G.R.1
  • 12
    • 77955928335 scopus 로고    scopus 로고
    • Network crossover performance on NK landscapes and deceptive problems
    • Missouri Estimation of Distribution Algorithms Laboratory, University of Missouri-St. Louis St. Louis, MO
    • M. Hauschild and M. Pelikan. Network crossover performance on NK landscapes and deceptive problems. MEDAL Report No. 2010003, Missouri Estimation of Distribution Algorithms Laboratory, University of Missouri-St. Louis St. Louis, MO, 2010. "
    • (2010) MEDAL Report No. 2010003
    • Hauschild, M.1    Pelikan, M.2
  • 17
    • 55749090641 scopus 로고    scopus 로고
    • F. G. Lobo, C. F. Lima, and Z. Michalewicz, editors Springer
    • F. G. Lobo, C. F. Lima, and Z. Michalewicz, editors. Parameter Setting in Evolutionary Algorithms. Springer, 2007.
    • (2007) Parameter Setting in Evolutionary Algorithms
  • 19
    • 84958959530 scopus 로고    scopus 로고
    • From recombination of genes to the estimation of distributions I. Binary parameters
    • H.-M. Voigt et al., editors Berlin, 1996. Kluwer Academic Publishers
    • H. Mühlenbein and G. Paaß. From recombination of genes to the estimation of distributions I. Binary parameters. In H.-M. Voigt et al., editors, Parallel Problem Solving from Nature - PPSN IV, pages 178-187, Berlin, 1996. Kluwer Academic Publishers.
    • Parallel Problem Solving from Nature - PPSN IV , pp. 178-187
    • Mühlenbein, H.1    Paaß, G.2
  • 22
    • 33645598864 scopus 로고    scopus 로고
    • Hierarchical problem solving by the Bayesian optimization algorithm
    • D. Whitley et al., editors Las Vegas, Nevada, 10-12 July Morgan Kaufmann
    • M. Pelikan and D. E. Goldberg. Hierarchical problem solving by the Bayesian optimization algorithm. In D. Whitley et al., editors, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2000), pages 275-282, Las Vegas, Nevada, 10-12 July 2000. Morgan Kaufmann.
    • (2000) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2000) , pp. 275-282
    • Pelikan, M.1    Goldberg, D.E.2
  • 26
    • 0346394707 scopus 로고    scopus 로고
    • Parameter-less genetic algorithm: A worst-case time and space complexity analysis
    • University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana, IL
    • M. Pelikan and F. G. Lobo. Parameter-less genetic algorithm: A worst-case time and space complexity analysis. IlliGAL Report No. 99014, University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana, IL, 1999.
    • (1999) IlliGAL Report No. 99014
    • Pelikan, M.1    Lobo, F.G.2
  • 27
    • 0001787552 scopus 로고    scopus 로고
    • The bivariate marginal distribution algorithm
    • R. Roy, T. Furuhashi, and P. K. Chawdhry, editors Springer-Verlag, London
    • M. Pelikan and H. Mühlenbein. The bivariate marginal distribution algorithm. In R. Roy, T. Furuhashi, and P. K. Chawdhry, editors, Advances in Soft Computing - Engineering Design and Manufacturing, pages 531-535. Springer-Verlag, London, 1999.
    • (1999) Advances in Soft Computing - Engineering Design and Manufacturing , pp. 531-535
    • Pelikan, M.1    Mühlenbein, H.2
  • 30
    • 45949089372 scopus 로고    scopus 로고
    • Adaptive estimation of distribution algorithms
    • C. Cotta, M. Sevaux, and K. Sörensen, editors Springer
    • R. Santana, P. Larrañaga, and J. A. Lozano. Adaptive estimation of distribution algorithms. In C. Cotta, M. Sevaux, and K. Sörensen, editors, Adaptive and Multilevel Metaheuristics, pages 177-197. Springer, 2008.
    • (2008) Adaptive and Multilevel Metaheuristics , pp. 177-197
    • Santana, R.1    Larrañaga, P.2    Lozano, J.A.3
  • 31
    • 32444431946 scopus 로고    scopus 로고
    • An adaptive pursuit strategy for allocating operator probabilities
    • H.-G. Beyer and U.-M. O'Reilly, editors ACM Press
    • D. Thierens. An adaptive pursuit strategy for allocating operator probabilities. In H.-G. Beyer and U.-M. O'Reilly, editors, Proceedings of the Genetic and Evolutionary Computation Conference GECCO-2005, pages 1539-1546. ACM Press, 2005.
    • (2005) Proceedings of the Genetic and Evolutionary Computation Conference GECCO-2005 , pp. 1539-1546
    • Thierens, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.