메뉴 건너뛰기




Volumn 41, Issue 7, 2010, Pages 840-846

Automated leukocyte recognition using fuzzy divergence

Author keywords

Cauchy distribution; Fuzzy divergence; Gamma distribution; Gaussian distribution; Leukocyte; Membership function

Indexed keywords

CAUCHY DISTRIBUTION; FUZZY DIVERGENCE; GAMMA DISTRIBUTION; GAUSSIANS; LEUKOCYTE;

EID: 77955926770     PISSN: 09684328     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.micron.2010.04.017     Document Type: Article
Times cited : (91)

References (31)
  • 1
    • 0024855650 scopus 로고
    • Automatic thresholding of gray-level pictures using two-dimensional entropy
    • Abutaleb A.S. Automatic thresholding of gray-level pictures using two-dimensional entropy. Computer Vision, Graphics and Image Processing 1989, 47:22-32.
    • (1989) Computer Vision, Graphics and Image Processing , vol.47 , pp. 22-32
    • Abutaleb, A.S.1
  • 2
    • 0037277964 scopus 로고    scopus 로고
    • Automated detection of working area of peripheral blood smears using mathematical morphology
    • IOS Press
    • Angulo J., Flandrin G. Automated detection of working area of peripheral blood smears using mathematical morphology. Analytical Cellular Pathology 2003, vol. 25. IOS Press, pp. 37-49.
    • (2003) Analytical Cellular Pathology , vol.25 , pp. 37-49
    • Angulo, J.1    Flandrin, G.2
  • 4
    • 0000442474 scopus 로고
    • The morphological approach to segmentation: the watershed transformation
    • Marcel Dekker, (Chapter 12)
    • Beucher S., Meyer F. The morphological approach to segmentation: the watershed transformation. Mathematical Morphology in Image Processing 1992, vol. 34. Marcel Dekker, pp. 433-481, (Chapter 12).
    • (1992) Mathematical Morphology in Image Processing , vol.34 , pp. 433-481
    • Beucher, S.1    Meyer, F.2
  • 5
    • 0029669423 scopus 로고    scopus 로고
    • Minimum cross-entropy threshold selection
    • Brink A.D., Pendock N.E. Minimum cross-entropy threshold selection. Pattern Recognition 1996, 29(1):179-188.
    • (1996) Pattern Recognition , vol.29 , Issue.1 , pp. 179-188
    • Brink, A.D.1    Pendock, N.E.2
  • 6
    • 0038668787 scopus 로고    scopus 로고
    • Segmentation using fuzzy divergence
    • A
    • Chaira T., Ray A.K. Segmentation using fuzzy divergence. Pattern Recognition Letters August 2003, 24(12):1837-1844.
    • (2003) Pattern Recognition Letters , vol.24 , Issue.12 , pp. 1837-1844
    • Chaira, T.1    Ray, A.K.2
  • 7
    • 0037991536 scopus 로고    scopus 로고
    • Fuzzy approach for color region extraction
    • J
    • Chaira T., Ray A.K. Fuzzy approach for color region extraction. Pattern Recognition Letters January 2003, 24(12):1943-1950.
    • (2003) Pattern Recognition Letters , vol.24 , Issue.12 , pp. 1943-1950
    • Chaira, T.1    Ray, A.K.2
  • 8
    • 2442599031 scopus 로고    scopus 로고
    • Threshold selection using fuzzy set theory
    • J
    • Chaira T., Ray A.K. Threshold selection using fuzzy set theory. Pattern Recognition Letters January 2004, 25(12):865-874.
    • (2004) Pattern Recognition Letters , vol.25 , Issue.12 , pp. 865-874
    • Chaira, T.1    Ray, A.K.2
  • 10
    • 4444316754 scopus 로고    scopus 로고
    • Application of flow cytometry and immunohistochemistry to diagnostic hematopathlogy
    • S
    • Dumpy C.H. Application of flow cytometry and immunohistochemistry to diagnostic hematopathlogy. Archives of Pathology & Laboratory Medicine September 2004, 128(9):1004-1022.
    • (2004) Archives of Pathology & Laboratory Medicine , vol.128 , Issue.9 , pp. 1004-1022
    • Dumpy, C.H.1
  • 11
    • 0001091243 scopus 로고    scopus 로고
    • Distance measure and induced fuzzy entropy
    • Fan J., Xie W. Distance measure and induced fuzzy entropy. Fuzzy Sets Systems 1999, 104:305-314.
    • (1999) Fuzzy Sets Systems , vol.104 , pp. 305-314
    • Fan, J.1    Xie, W.2
  • 14
    • 33847360582 scopus 로고    scopus 로고
    • Applying the improved fuzzy cellular neural network IFCNN to white blood cell detection. Source
    • M
    • Hitong W., Korris S., Chungb F.L., Duana F. Applying the improved fuzzy cellular neural network IFCNN to white blood cell detection. Source. Neurocomputing Archive March 2007, 70(7-9).
    • (2007) Neurocomputing Archive , vol.70 , Issue.7-9
    • Hitong, W.1    Korris, S.2    Chungb, F.L.3    Duana, F.4
  • 22
    • 77953903413 scopus 로고    scopus 로고
    • An improved seeded region growing algorithm
    • Mehnert A., Jackway P. An improved seeded region growing algorithm. Pattern Recognition Letters 2007, 11:353-359.
    • (2007) Pattern Recognition Letters , vol.11 , pp. 353-359
    • Mehnert, A.1    Jackway, P.2
  • 23
    • 0036467949 scopus 로고    scopus 로고
    • Analysis of infected blood cell images using morpholical operators
    • F
    • Ruberto C.D., Dempster A. Analysis of infected blood cell images using morpholical operators. Image and Vision Computing February 2002, 20(2):133-146. (14).
    • (2002) Image and Vision Computing , vol.20 , Issue.2-14 , pp. 133-146
    • Ruberto, C.D.1    Dempster, A.2
  • 24
    • 4644244175 scopus 로고    scopus 로고
    • A texture approach to leukocyte recognition
    • A
    • Sabino D.M.U. A texture approach to leukocyte recognition. Real Time Imaging, Science Director August 2004, 10(4):205-216.
    • (2004) Real Time Imaging, Science Director , vol.10 , Issue.4 , pp. 205-216
    • Sabino, D.M.U.1
  • 28
    • 0000363402 scopus 로고    scopus 로고
    • Counting white blood cells using morphological granulometries
    • Theera-Umpon N., Gader P.D. Counting white blood cells using morphological granulometries. Journal of Electronic Imaging 2000, 9(2):170-177.
    • (2000) Journal of Electronic Imaging , vol.9 , Issue.2 , pp. 170-177
    • Theera-Umpon, N.1    Gader, P.D.2
  • 29
    • 77955918621 scopus 로고    scopus 로고
    • Morphological granulometric estimation with random primitives and applications to blood cell counting. Doctoral Dissertation, University of Missouri-Columbia.
    • Thera-Umpon, N., 2000. Morphological granulometric estimation with random primitives and applications to blood cell counting. Doctoral Dissertation, University of Missouri-Columbia.
    • (2000)
    • Thera-Umpon, N.1
  • 30
    • 26944472570 scopus 로고    scopus 로고
    • Automatic white blood cell classification using biased-output neural networks with morphological features
    • Theera-Umpon N. Automatic white blood cell classification using biased-output neural networks with morphological features. Thammasat International Journal of Science and Technology 2003, 8(1).
    • (2003) Thammasat International Journal of Science and Technology , vol.8 , Issue.1
    • Theera-Umpon, N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.