메뉴 건너뛰기




Volumn , Issue , 2010, Pages 527-534

Indicator-based evolutionary algorithm with hypervolume approximation by achievement scalarizing functions

Author keywords

Evolutionary multiobjective optimization (EMO); Hypervolume; Indicator based evolutionary algorithm (IBEA); Many objectives

Indexed keywords

ALTERNATIVE FRAMEWORK; APPROXIMATION METHODS; COMPUTATION TIME; COMPUTATIONAL EXPERIMENT; EVOLUTIONARY MULTIOBJECTIVE OPTIMIZATION; HYPERVOLUME; INDICATOR FUNCTIONS; INDICATOR-BASED EVOLUTIONARY ALGORITHM (IBEA); MANY OBJECTIVES; MULTI-OBJECTIVE PROBLEM; PARETO DOMINANCE; PERFORMANCE DETERIORATION; SCALARIZING FUNCTION; SOLUTION SET;

EID: 77955888342     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1830483.1830578     Document Type: Conference Paper
Times cited : (80)

References (37)
  • 4
    • 72249110751 scopus 로고    scopus 로고
    • S-metric calculation by considering dominated hypervolume as Klee's measure problem
    • Beume, N. S-metric calculation by considering dominated hypervolume as Klee's measure problem. Evolutionary Computation 17, 4 (2009) 477-492.
    • (2009) Evolutionary Computation , vol.17 , Issue.4 , pp. 477-492
    • Beume, N.1
  • 6
    • 33947669974 scopus 로고    scopus 로고
    • SMS-EMOA: Multiobjective selection based on dominated hypervolume
    • Beume, N., Naujoks, B., andEmmerich, M. SMS-EMOA: multiobjective selection based on dominated hypervolume. European Journal of Operational Research 180, 3 (2007) 1653-1669.
    • (2007) European Journal of Operational Research , vol.180 , Issue.3 , pp. 1653-1669
    • Beume, N.1    Naujoks, B.2    Emmerich, M.3
  • 20
    • 2642512286 scopus 로고    scopus 로고
    • On the computational efficiency of multiple objective metaheuristics. The knapsack problem case study
    • Jaszkiewicz, A. On the computational efficiency of multiple objective metaheuristics. The knapsack problem case study. European Journal of Operational Research 158, 2 (2004) 418-433.
    • (2004) European Journal of Operational Research , vol.158 , Issue.2 , pp. 418-433
    • Jaszkiewicz, A.1
  • 22
    • 67349108023 scopus 로고    scopus 로고
    • Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II
    • Li, H., andZhang, Q. Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans. on Evolutionary Computation 13, 2 (2009) 284-302.
    • (2009) IEEE Trans. on Evolutionary Computation , vol.13 , Issue.2 , pp. 284-302
    • Li, H.1    Zhang, Q.2
  • 24
    • 19044393966 scopus 로고    scopus 로고
    • On scalarizing functions in multiobjective optimization
    • Miettinen, K., and Makela, M. On scalarizing functions in multiobjective optimization. OR Spectrum 24,2 (2002) 193-213.
    • (2002) OR Spectrum , vol.24 , Issue.2 , pp. 193-213
    • Miettinen, K.1    Makela, M.2
  • 26
    • 36549051604 scopus 로고    scopus 로고
    • On the evolutionary optimization of many conflicting objectives
    • Purshouse, R. C. andFleming, P. J. On the evolutionary optimization of many conflicting objectives. IEEE Trans. on Evolutionary Computation 11, 6 (2007) 770-784.
    • (2007) IEEE Trans. on Evolutionary Computation , vol.11 , Issue.6 , pp. 770-784
    • Purshouse, R.C.1    Fleming, P.J.2
  • 31
    • 34548108555 scopus 로고    scopus 로고
    • MOEA/D: A multiobjective evolutionary algorithm based on decomposition
    • Zhang, Q., andLi, H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans. on Evolutionary Computation 11, 6 (2007) 712-731.
    • (2007) IEEE Trans. on Evolutionary Computation , vol.11 , Issue.6 , pp. 712-731
    • Zhang, Q.1    Li, H.2
  • 33
    • 35048846146 scopus 로고    scopus 로고
    • Indicator-based selection in multiobjective search
    • Zitzler, E., andKünzli, S. Indicator-based selection in multiobjective search. Proc. of PPSN 2004, 832-842.
    • Proc. of PPSN 2004 , pp. 832-842
    • Zitzler, E.1    Künzli, S.2
  • 34
    • 1642474729 scopus 로고    scopus 로고
    • SPEA2: Improving the strength Pareto evolutionary algorithm
    • Zitzler, E., and Laumanns, M., andThiele, L. SPEA2: Improving the strength Pareto evolutionary algorithm. TIK-Report, No. 103 (2001).
    • (2001) TIK-Report , Issue.103
    • Zitzler, E.1    Laumanns, M.2    Thiele, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.